Molecular Activity Prediction Based on Graph Attention Network - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Molecular Activity Prediction Based on Graph Attention Network

Résumé

Spatial convolutional models of Graph Neural Networks (GNNs) updates embeddings of nodes by the neighborhood aggregation, it has obvious advantages in reducing time complexity and improving accuracy. Therefore, it is a very important task to change the way of neighborhood aggregation to learn better node embeddings. Attention mechanisms are usually used to assign trainable weights to nodes in neighborhood aggregation, so that the node influence can also participate in the process of neighborhood aggregation. We propose the ATT-MLP model that combines attention mechanism and multi-layer perception(MLP), and applys node attention weights to graph pooling. Experiments on graph prediction show that our algorithm performs better than other baselines on commonly used datasets.
Fichier sous embargo
Fichier sous embargo
0 0 2
Année Mois Jours
Avant la publication
mercredi 1 janvier 2025
Fichier sous embargo
mercredi 1 janvier 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04666418 , version 1 (01-08-2024)

Licence

Identifiants

Citer

Xiaowei Cao, Tiwen Wang, Ruohui Cheng, Jingyi Ding. Molecular Activity Prediction Based on Graph Attention Network. 5th International Conference on Intelligence Science (ICIS), Oct 2022, Xi'an, China. pp.395-401, ⟨10.1007/978-3-031-14903-0_42⟩. ⟨hal-04666418⟩
11 Consultations
2 Téléchargements

Altmetric

Partager

More