Recombinant porcine interferon delta 8 inhibits swine acute diarrhoea syndrome coronavirus infection in vitro and in vivo
Résumé
AbstractSwine acute diarrhoea syndrome coronavirus (SADS-CoV), which originates from zoonotic transmission of bat coronaviruses in the HKU2 lineage, causes severe illness in pigs and carries a high risk of spreading to humans. At present, there are no licenced therapeutics for the treatment of SADS-CoV. In this study, we examined the effectiveness of recombinant porcine interferon delta 8 (IFN-δ8) against SADS-CoV both in vitro and in vivo. In vitro experiments showed that IFN-δ8 inhibited SADS-CoV proliferation in a concentration-dependent manner, with complete inhibition occurring at a concentration of 5 μg/mL. In vivo experiments demonstrated that two 50 μg/kg doses of IFN-δ8 injected intraperitoneally protected piglets against lethal challenge, blocked viral shedding, attenuated intestinal damage, and decreased the viral load in the jejunum and ileum. Further findings suggested that IFN-δ8 inhibited SADS-CoV infection by increasing the expression of IFN-stimulated genes. These results indicate that IFN-δ8 shows promise as a biological macromolecule drug against SADS-CoV infection.
Origine | Publication financée par une institution |
---|