Pré-Publication, Document De Travail Année : 2024

Sharp functional calculus for the Taibleson operator on non-archimedean local fields

Résumé

For any non-archimedean local field K and any integer n1, we show that the Taibleson operator admits a bounded H(Σθ) functional calculus for any angle θ>0 on the Banach space Lp(Kn), where Σθ={zC:|argz|<θ} and 1<p<, and even a bounded H\"ormander functional calculus of order 32 (with striking contrast to the Euclidean Laplacian on \Rn). In our study, we explore harmonic analysis on locally compact Spector-Vilenkin groups establishing the R-boundedness of a family of convolution operators. Our results enhance the understanding of functional calculi of operators acting on Lp-spaces associated to totally disconnected spaces and have implications for the maximal regularity of the fundamental evolution equations associated to the Taibleson operator, relevant in various physical models.
Fichier principal
Vignette du fichier
Taibleson-v46-arxiv-01.pdf (748) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04644652 , version 1 (12-07-2024)

Identifiants

Citer

Cédric Arhancet, Christoph Kriegler. Sharp functional calculus for the Taibleson operator on non-archimedean local fields. 2024. ⟨hal-04644652⟩
23 Consultations
16 Téléchargements

Partager

More