One-Class Riemannian EEG Classifier to Detect Anesthesia - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

One-Class Riemannian EEG Classifier to Detect Anesthesia

Résumé

Accidental awareness during general anesthesia (AAGA) is a severe complication of anesthetic care. To prevent AAGAs, electroencephalograms (EEG) began to be employed, but current brain monitors still prove inadequate in detecting AAGAs. We aim to propose a new Brain-Computer Interface (BCI) that monitors the motor cortex via EEG, detects movement intentions (MIs) based on Median Nerve Stimulation (MNS) patterns, and alerts the medical team. Consequently, our first objective is to develop a classifier that distinguishes EEG patterns induced by MNS under two conditions: when a patient is awake vs under GA. Since the latter condition is unavailable presurgery for BCI calibration, we focused on one-class methods. A One-Class Riemannian Minimum Distance to the Mean trained with the awake data correctly differentiates between these two conditions (test balanced accuracy of 85.44%), significantly better than when the classifier is trained with the beginning of intraoperative data.
Fichier principal
Vignette du fichier
NEC2024-OneClassEEG.pdf (520.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04634709 , version 1 (04-07-2024)

Identifiants

  • HAL Id : hal-04634709 , version 1

Citer

Valérie Marissens Cueva, Sébastien Rimbert, Ana Maria Cebolla Alvarez, Mathieu Petieau, Iraj Hashemi, et al.. One-Class Riemannian EEG Classifier to Detect Anesthesia. 5th International Neuroergonomics Conference 2024, Jul 2024, Bordeaux, France. ⟨hal-04634709⟩
102 Consultations
77 Téléchargements

Partager

More