RENYI DIVERGENCES LEARNING FOR EXPLAINABLE CLASSIFICATION OF SAR IMAGE PAIRS - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

RENYI DIVERGENCES LEARNING FOR EXPLAINABLE CLASSIFICATION OF SAR IMAGE PAIRS

Résumé

We consider the problem of classifying a pair of Synthetic Aperture Radar (SAR) images by proposing an explainable and frugal algorithm that integrates a set of divergences. The approach relies on a statistical framework that takes standard probability distributions into account for modelling SAR data. Then, by learning a combination of parameterized Renyi divergences and their parameters from the data, we are able to classify the pair of images with fewer parameters than regular machine learning approaches while also allowing an interpretation of the results related to the priors used. Experiments on real multi-class data demonstrate the virtues of the suggested method when compared to both Random Forest and Convolutional Neural Networks (CNN) classifiers, showing its resilience to disturbances such as polluted labels and variations in the percentage of training data.
Fichier principal
Vignette du fichier
Divergence_Ensemble_Learning_for_Explainable_Classification_of_SAR_Image_pairs_V4.pdf (400.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04629670 , version 1 (30-06-2024)

Identifiants

Citer

Matthieu Gallet, Ammar Mian, Abdourrahmane Atto. RENYI DIVERGENCES LEARNING FOR EXPLAINABLE CLASSIFICATION OF SAR IMAGE PAIRS. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2024, Seoul, France. pp.7445-7449, ⟨10.1109/ICASSP48485.2024.10448227⟩. ⟨hal-04629670⟩

Collections

UNIV-SAVOIE LISTIC
29 Consultations
23 Téléchargements

Altmetric

Partager

More