Distributed MCMC Inference for Bayesian Non-parametric Latent Block Model - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Distributed MCMC Inference for Bayesian Non-parametric Latent Block Model

Résumé

In this paper, we introduce a novel Distributed Markov Chain Monte Carlo (MCMC) inference method for the Bayesian Non-Parametric Latent Block Model (DisNPLBM), employing the Master/Worker architecture. Our non-parametric co-clustering algorithm divides observations and features into partitions using latent multivariate Gaussian block distributions. The workload on rows is evenly distributed among workers, who exclusively communicate with the master and not among themselves. DisNPLBM demonstrates its impact on cluster labeling accuracy and execution times through experimental results. Moreover, we present a real-use case applying our approach to co-cluster gene expression data. The code source is publicly available at https://github.com/redakhoufache/Distributed-NPLBM
Fichier principal
Vignette du fichier
2402.01050v1.pdf (471.07 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04623748 , version 1 (25-06-2024)

Identifiants

Citer

Reda Khoufache, Anisse Belhadj, Mustapha Lebbah, Hanene Azzag. Distributed MCMC Inference for Bayesian Non-parametric Latent Block Model. 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, May 2024, Taipei, Taiwan. pp.271-283, ⟨10.1007/978-981-97-2242-6_22⟩. ⟨hal-04623748⟩
82 Consultations
12 Téléchargements

Altmetric

Partager

More