Factor-critical graphs and dstab, astab for an edge ideal - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Factor-critical graphs and dstab, astab for an edge ideal

Résumé

Let $G$ be a simple, connected non bipartite graph and let $I_G$ be the edge ideal of $G$. In our previous work we showed that L. Lov\'{a}sz's theorem on ear decompositions of factor-critical graphs and the canonical decomposition of a graph given by Edmonds and Gallai are basic tools for the irreducible decomposition of $I^{k}_G$. In this paper we use some tools from graph theory, mainly Withney's theorem on ear decompositions of 2-edge connected graphs in order to introduce a new method to make a graph factor-critical. We can describe the set $\cup_ {k=1}^{\infty}\Ass (I^{k}_G) $ in terms of some subsets of $G$. We give explicit formulas for the numbers $\astab(I_G)$ and $\dstab(I_G)$, which are, respectively, the smallest number $k$ such that $\Ass (I^{k}_G)=\Ass (I^{k+i}_G)$ for all $i\geq 0$ and the smallest number $k$ such that the maximal ideal belongs to $ \Ass (I^{k}_G)$. We also give very simple upper bounds for $\astab(I_G)$ and $\dstab(I_G)$.
Fichier principal
Vignette du fichier
MD.22-06-2024.pdf (606.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04620938 , version 1 (22-06-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-04620938 , version 1

Citer

Marcel Morales, Nguyen Thi Dung. Factor-critical graphs and dstab, astab for an edge ideal. 2024. ⟨hal-04620938⟩
25 Consultations
18 Téléchargements

Partager

More