Explicit Large Image Theorems for Modular Forms - Archive ouverte HAL
Article Dans Une Revue Journal of the London Mathematical Society Année : 2014

Explicit Large Image Theorems for Modular Forms

Résumé

Let $k$ and $N$ be positive integers with $k \geq 2$ even. In this paper we give general explicit upper-bounds in terms of $k$ and $N$ from which all the residual representations $\overline{\rho}_{f,\lambda}$ attached to non-CM newforms of weight $k$ and level $\Gamma_0(N)$ with $\lambda$ of residue characteristic greater than these bounds are "as large as possible". The results split into different cases according to the possible types for the residual images and each of them is illustrated on some numerical examples.
Fichier principal
Vignette du fichier
1210.5428v1.pdf (333.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04614942 , version 1 (17-06-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Nicolas Billerey, Luis Dieulefait. Explicit Large Image Theorems for Modular Forms. Journal of the London Mathematical Society, 2014, 89 (2), pp.499-523. ⟨10.1112/jlms/jdt072⟩. ⟨hal-04614942⟩
17 Consultations
14 Téléchargements

Altmetric

Partager

More