RPEM : Randomized Monte Carlo parametric expectation maximization algorithm - Archive ouverte HAL
Article Dans Une Revue CPT: Pharmacometrics and Systems Pharmacology Année : 2024

RPEM : Randomized Monte Carlo parametric expectation maximization algorithm

RPEM: Randomized Monte Carlo parametric expectation maximization algorithm.

Rong Chen
Alan Schumitzky
  • Fonction : Auteur
Alona Kryshchenko
Keith Nieforth
  • Fonction : Auteur
Michael Tomashevskiy
  • Fonction : Auteur
Shuhua Hu
Julian Otalvaro
Walter Yamada
Michael Neely

Résumé

Abstract Inspired from quantum Monte Carlo, by sampling discrete and continuous variables at the same time using the Metropolis–Hastings algorithm, we present a novel, fast, and accurate high performance Monte Carlo Parametric Expectation Maximization (MCPEM) algorithm. We named it Randomized Parametric Expectation Maximization (RPEM). We compared RPEM with NONMEM's Importance Sampling Method (IMP), Monolix's Stochastic Approximation Expectation Maximization (SAEM), and Certara's Quasi‐Random Parametric Expectation Maximization (QRPEM) for a realistic two‐compartment voriconazole model with ordinary differential equations using simulated data. We show that RPEM is as fast and as accurate as the algorithms IMP, QRPEM, and SAEM for the voriconazole model in reconstructing the population parameters, for the normal and log‐normal cases.

Dates et versions

hal-04614664 , version 1 (17-06-2024)

Identifiants

Citer

Rong Chen, Alan Schumitzky, Alona Kryshchenko, Keith Nieforth, Michael Tomashevskiy, et al.. RPEM : Randomized Monte Carlo parametric expectation maximization algorithm. CPT: Pharmacometrics and Systems Pharmacology, 2024, 13 (5), pp.759-780. ⟨10.1002/psp4.13113⟩. ⟨hal-04614664⟩
19 Consultations
0 Téléchargements

Altmetric

Partager

More