How to design a dataset compliant with an ML-based system ODD? - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

How to design a dataset compliant with an ML-based system ODD?

Cyril Cappi
  • Fonction : Auteur
  • PersonId : 1110542
Mélanie Ducoffe
Christophe Gabreau
  • Fonction : Auteur
  • PersonId : 1102007
Laurent Gardes
  • Fonction : Auteur
  • PersonId : 1159868
Adrien Gauffriau
  • Fonction : Auteur
  • PersonId : 1089279
Jean-Brice Ginestet
  • Fonction : Auteur
DGA

Résumé

This paper focuses on a Vision-based Landing task and presents the design and the validation of a dataset that would comply with the Operational Design Domain (ODD) of a Machine-Learning (ML) system. Relying on emerging certifica- tion standards, we describe the process for establishing ODDs at both the system and image levels. In the process, we present the translation of high-level system constraints into actionable image-level properties, allowing for the definition of verifiable Data Quality Requirements (DQRs). To illustrate this approach, we use the Landing Approach Runway Detection (LARD) dataset which combines synthetic imagery and real footage, and we focus on the steps required to verify the DQRs. The replicable framework presented in this paper addresses the challenges of designing a dataset compliant with the stringent needs of ML- based systems certification in safety-critical applications.
Fichier principal
Vignette du fichier
main.pdf (7.42 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04614554 , version 1 (19-06-2024)

Identifiants

  • HAL Id : hal-04614554 , version 1

Citer

Cyril Cappi, Noémie Cohen, Mélanie Ducoffe, Christophe Gabreau, Laurent Gardes, et al.. How to design a dataset compliant with an ML-based system ODD?. 12th European Congress on Embedded Real Time Software and Systems, Jun 2024, Toulouse, France. ⟨hal-04614554⟩
137 Consultations
122 Téléchargements

Partager

More