Clustering of live network alarms using unsupervised statistical models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Clustering of live network alarms using unsupervised statistical models

Résumé

An unsupervised topology and time-based clustering model is proposed to regroup alarms according to their failure events. The different modes and settings of the model are assessed using topology and alarm-related data extracted from a live network as part of a field trial.
Fichier principal
Vignette du fichier
ECOC2023_alarm_clustering.pdf (527.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04600192 , version 1 (04-06-2024)

Identifiants

Citer

Diane Maillot-Tchofo, Ahmed Triki, Maxime Laye, John Puentes. Clustering of live network alarms using unsupervised statistical models. IET 49th European Conference on Optical Communications (ECOC 2023), The Institution of Engineering & Technology, Oct 2023, Glasgow, United Kingdom. pp.1246-1249, ⟨10.1049/icp.2023.2517⟩. ⟨hal-04600192⟩
14 Consultations
32 Téléchargements

Altmetric

Partager

More