Violation of Bell inequalities in an analogue black hole
Résumé
Signals of entanglement and nonlocality are quantitatively evaluated at zero and finite temperature in an analogue black hole realized in the flow of a quasi one-dimensional Bose-Einstein condensate. The violation of Lorentz invariance inherent to this analog system opens the prospect to observe 3-mode quantum correlations and we study the corresponding violation of bipartite and tripartite Bell inequalities. It is shown that the long wavelength modes of the system are maximally entangled, in the sense that they realize a superposition of continuous variable versions of Greenberger-Horne-Zeilinger states whose entanglement resists partial tracing.