Pré-Publication, Document De Travail Année : 2024

Relative Entropy for the Numerical Diffusive Limit of the Linear Jin-Xin System

Résumé

This paper deals with the diffusive limit of the Jin and Xin model and its approximation by an asymptotic preserving finite volume scheme. At the continuous level, we determine a convergence rate to the diffusive limit by means of a relative entropy method. Considering a semi-discrete approxi- mation (discrete in space and continuous in time), we adapt the method to this semi-discrete framework and establish that the approximated solutions converge towards the discrete convection-diffusion limit with the same convergence rate.
Fichier principal
Vignette du fichier
proc-BCM-JC-MA.pdf (676.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04598587 , version 1 (04-06-2024)
hal-04598587 , version 2 (06-09-2024)

Identifiants

  • HAL Id : hal-04598587 , version 1

Citer

Marianne Bessemoulin-Chatard, Hélène Mathis. Relative Entropy for the Numerical Diffusive Limit of the Linear Jin-Xin System. 2024. ⟨hal-04598587v1⟩
84 Consultations
76 Téléchargements

Partager

More