Anomalous Landau damping and algebraic thermalization in two-dimensional superfluids far from equilibrium
Résumé
We present a quantitative description of the thermalization dynamics of far-from-equilibrium, two-dimensional (2D) Bose superfluids. Our analysis leverages a quantum kinetic formalism and allows us to identify two successive regimes of relaxation: an initial damping of quasi-particles due to Landau scattering processes, followed by the slower establishment of a global equilibrium at long time. For a far-from-equilibrium initial state, we find that Landau damping differs from the conventional picture of exponentially relaxing quasi-particles. Moreover, our results showcase a pronounced mechanism of algebraic transport at late times, rooted in energy conservation and compatible with 2D diffusion. Using theoretical and numerical arguments, we construct a detailed dynamical portrait of global equilibration in 2D superfluids.