The Effect of Ignition Procedure on Flashback of Hydrogen-Enriched Flames - Archive ouverte HAL
Article Dans Une Revue Journal of Engineering for Gas Turbines and Power Année : 2024

The Effect of Ignition Procedure on Flashback of Hydrogen-Enriched Flames

Résumé

The impact of different ignition sequences on the ignition dynamics of CH4-H2 flames in a bluff body burner is investigated at atmospheric conditions. Experiments are performed over a wide range of operating conditions covering pure methane injection (PH0) to pure hydrogen injection (PH100). A perforated plate of total porosity σ = 0.17 is positioned at the outlet of the combustion chamber to increase the chamber back pressure and trigger transient flashback during ignition. Time-series of pressure, OH* chemiluminescence and OH-PLIF images of the propagating flame branch are recorded simultaneously to characterize the ignition process. Two ignition procedures are investigated. For ignition procedure A, designated as an early ignition procedure, the spark is initiated before fuel injection. For ignition procedure B, designated as a late ignition, the spark is only activated after the fuel injection. The impact of the fuel air mixing on the final stabilization state is investigated by changing the fuel delivery time (dt) before the initial spark. Three different time delays are considered dt = 1, 3 and 5 s. The final state of the flame is found to be highly sensitive to the selected ignition procedure and increasing dt favors the occurrence of flashback. At constant power, the magnitude of the pressure peak is driven by a competition between the fuel mass flow rate at the moment of ignition and the high reactivity of hydrogen which shifts the flammability limit towards lower equivalence ratios, hence generating a lower reaction rate. For procedure A, the peak of the chamber over pressure shows a non-monotonic growth for increasing levels of H2 in the fuel blend, while it linearly increases for procedure B. Experiments are then conducted at a fixed injection flow velocity Ub = 5 m.s−1 and fixed laminar burning velocity Sl0 = 0.25 m.s−1 by varying the level of hydrogen enrichment. For procedure A, the over pressure amplitude decreases with increasing the hydrogen enrichment leading to a soft ignition for all CH4-H2 blends. Under ignition procedure B, the amplitude of the over pressure reached during ignition is found to be relatively unaffected by the hydrogen concentration, but the flame stabilization mode shows a strong dependence to both the level of H2-enrichment and fuel delivery time dt. OH* as well as OH-PLIF images reveal that the trajectory of the flame leading point changes as dt increases. The different dynamics of the flame leading points is likely to be the cause the different types of stabilization modes observed.
Fichier principal
Vignette du fichier
ASME_2023_For_Hal.pdf (9.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04584108 , version 1 (22-05-2024)

Identifiants

Citer

Tarik Yahou, Thierry Schuller, James R Dawson. The Effect of Ignition Procedure on Flashback of Hydrogen-Enriched Flames. Journal of Engineering for Gas Turbines and Power, 2024, 146 (1), ⟨10.1115/GT2023-101785⟩. ⟨hal-04584108⟩
35 Consultations
28 Téléchargements

Altmetric

Partager

More