Modeling Hadronic Interactions in Ultra-High-Energy Cosmic Rays within Astrophysical Environments: A Parametric Approach
Résumé
Interactions of ultra-high energy cosmic-rays (UHECRs) accelerated in astrophysical environments have been shown to shape the energy production rate of nuclei escaping from the confinement zone. To address the influence of hadronic interactions, Hadronic Interaction Models (HIM) come into play. In this context, we present a parameterization capable of capturing the outcomes of two distinct HIMs, namely EPOS-LHC and Sibyll2.3d, in terms of secondary fluxes, including escaping nuclei, neutrinos, photons, and electrons. Our parametrization is systematically evaluated against the source codes, both at fixed energy and mass, as well as in a physical case scenario. The comparison demonstrates that our parameterization aligns well with the source codes, establishing its reliability as a viable alternative for analytical or fast Monte Carlo approaches dedicated to the study of UHECR propagation within source environments. This suggests the potential for utilizing our parameterization as a practical substitute in studies focused on the intricate dynamics of ultra-high energy cosmic rays.