A Myhill-Nerode Theorem for Higher-Dimensional Automata - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

A Myhill-Nerode Theorem for Higher-Dimensional Automata

Résumé

We establish a Myhill-Nerode type theorem for higher-dimensional automata (HDAs), stating that a language is regular precisely if it has finite prefix quotient. HDAs extend standard automata with additional structure, making it possible to distinguish between interleavings and concurrency. We also introduce deterministic HDAs and show that not all HDAs are determinizable, that is, there exist regular languages that cannot be recognised by a deterministic HDA. Using our theorem, we develop an internal characterisation of deterministic languages.
Fichier principal
Vignette du fichier
fahrenberg.23.pn.pdf (308.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04580371 , version 1 (19-05-2024)

Identifiants

Citer

Uli Fahrenberg, Krzysztof Ziemiański. A Myhill-Nerode Theorem for Higher-Dimensional Automata. Application and Theory of Petri Nets and Concurrency (PETRI NETS), Jun 2023, Caparica, Portugal. ⟨10.1007/978-3-031-33620-1_9⟩. ⟨hal-04580371⟩
4 Consultations
5 Téléchargements

Altmetric

Partager

More