Resilience Analysis of Multi-modal Logistics Service Network Through Robust Optimization with Budget-of-Uncertainty - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Resilience Analysis of Multi-modal Logistics Service Network Through Robust Optimization with Budget-of-Uncertainty

Yaxin Pang
  • Fonction : Auteur
  • PersonId : 1383699
Eric Ballot

Résumé

Supply chain resilience analysis aims to identify the critical elements in the supply chain, measure its reliability, and analyze solutions for improving vulnerabilities. While extensive methods like stochastic approaches have been dominant, robust optimization—widely applied in robust planning under uncertainties without specific probability distributions—remains relatively underexplored for this research problem. This paper employs robust optimization with budget-of-uncertainty as a tool to analyze the resilience of multi-modal logistics service networks under time uncertainty. We examine the interactive effects of three critical factors: network size, disruption scale, disruption degree. The computational experiments offer valuable managerial insights for practitioners and researchers.
Fichier sous embargo
Fichier sous embargo
1 4 21
Année Mois Jours
Avant la publication
samedi 23 mai 2026
Fichier sous embargo
samedi 23 mai 2026
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04579868 , version 1 (18-05-2024)

Identifiants

Citer

Yaxin Pang, Shenle Pan, Eric Ballot. Resilience Analysis of Multi-modal Logistics Service Network Through Robust Optimization with Budget-of-Uncertainty. 2024. ⟨hal-04579868⟩
29 Consultations
3 Téléchargements

Altmetric

Partager

More