Stacked and parallel U-nets with multi-output for myocardial pathology segmentation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Stacked and parallel U-nets with multi-output for myocardial pathology segmentation

Résumé

In the field of medical imaging, many different image modalities contain different information, helping practitionners to make diagnostic, follow-up, etc. To better analyze images, mixing multi-modalities information has become a trend. This paper provides one cascaded UNet framework and uses three different modalities (the late gadolinium enhancement (LGE) CMR sequence, the balanced- Steady State Free Precession (bSSFP) cine sequence and the T2-weighted CMR) to complete the segmentation of the myocardium, scar and edema in the context of the MICCAI 2020 myocardial pathology segmentation combining multi-sequence CMR Challenge dataset (MyoPS 2020). We evaluate the proposed method with 5-fold-cross-validation on the MyoPS 2020 dataset.
Fichier non déposé

Dates et versions

hal-04579618 , version 1 (17-05-2024)

Identifiants

Citer

Zhou Zhao, Nicolas Boutry, Élodie Puybareau. Stacked and parallel U-nets with multi-output for myocardial pathology segmentation. Myocardial Pathology Segmentation Combining Multi-Sequence CMR Challenge, Dec 2020, Lima, Peru. pp.138--145, ⟨10.1007/978-3-030-65651-5_13⟩. ⟨hal-04579618⟩
10 Consultations
0 Téléchargements

Altmetric

Partager

More