Enhancing Explainability in Predictive Maintenance : Investigating the Impact of Data Preprocessing Techniques on XAI Effectiveness - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Enhancing Explainability in Predictive Maintenance : Investigating the Impact of Data Preprocessing Techniques on XAI Effectiveness

Résumé

In predictive maintenance, the complexity of the data often requires the use of Deep Learning models. These models, called “black boxes”, have proved their worth in predicting the Remaining Useful Life (RUL) of industrial machines. However, the inherent opacity of these models requires the incorporation of post-hoc explanation methods to enhance transparency. The quality of the explanations provided is then assessed using so-called evaluation metrics. Modeling is a whole process that includes an important data preprocessing phase, with parameter selection such as time window, smoothing parameter, or rectified RUL when dealing with multivariate time series dataset. We propose to analyze the impact of these preprocessing methods on the quality of explanations provided by the local post-hoc models LIME, KernelSHAP, and L2X, utilizing six evaluation metrics: stability, consistency, congruence, selectivity, completeness, and acumen. This analysis will be based on NASA's Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset with the LSTM model. Our findings reveal that the choice of specific pre-processing parameters can significantly improve predictive performance. Furthermore, the quality of explanations depends on the selection of explicability methods. In addition, a factorial analysis of the evaluation metrics reveals that they do not all point in the same direction. Indeed, understanding the nuanced relationships between evaluation metrics is essential for a comprehensive and accurate assessment of explainability methods.
Fichier principal
Vignette du fichier
FLAIRS_37_89.pdf (2.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04579205 , version 1 (22-05-2024)

Licence

Identifiants

Citer

Mouhamadou-Lamine Ndao, Genane Youness, Ndèye Niang, Gilbert Saporta. Enhancing Explainability in Predictive Maintenance : Investigating the Impact of Data Preprocessing Techniques on XAI Effectiveness. The 37th International Conference of the Florida Artificial Intelligence Research Society, May 2024, Florida, United States. ⟨10.32473/flairs.37.1.135526⟩. ⟨hal-04579205⟩
144 Consultations
80 Téléchargements

Altmetric

Partager

More