A novel approach for 3D morphological characterization of silica nanoparticle population through HAADF-STEM - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Measurement - Journal of the International Measurement Confederation (IMEKO) Année : 2021

A novel approach for 3D morphological characterization of silica nanoparticle population through HAADF-STEM

Résumé

The morphology of amorphous silica NPs in three dimensions (3D) of space is analysed using a single technique: the transmission electron microscope in Scanning Transmission Electron Microscopy with High Angle Annular Dark Field (HAADF-STEM) imaging mode. For this purpose, a method consisting in adjusting the HAADF-STEM signal by a function describing the thickness of material in a sphere has been developed to determine the height of the nano-object and tested on particles having quasi-spherical shape. This approach is suitable only in the case of a nanomaterial chemically homogeneous. A reference present in the image is required for calibrating the signal strength. This reference can be either a particle of known shape or a particle whose height was previously measured with another technique (i.e. Atomic Force Microscopy). Thus, the study of the small silica particles by HAADF-STEM highlighted their spheroidal shape but also their preferential orientation on the substrate.
Fichier principal
Vignette du fichier
S0263224121005029.pdf (2.02 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04573699 , version 1 (22-07-2024)

Licence

Identifiants

Citer

Loïc Crouzier, Frédéric Pailloux, Alexandra Delvallée, Laurent Devoille, Nicolas Feltin, et al.. A novel approach for 3D morphological characterization of silica nanoparticle population through HAADF-STEM. Measurement - Journal of the International Measurement Confederation (IMEKO), 2021, 180, pp.109521. ⟨10.1016/j.measurement.2021.109521⟩. ⟨hal-04573699⟩
10 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More