Interactive Latent Diffusion Model - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Interactive Latent Diffusion Model

Nickolai Knizev
Alessandro Leite
Marc Schoenauer

Résumé

This paper introduces Interactive Latent Diffusion Model (IELDM), an encapsulation of a popular text-to-image diffusion model into an Evolutionary framework, allowing the users to steer the design of images toward their goals, alleviating the tedious trial-and-error process that such tools frequently require. The users can not only designate their favourite images, allowing the system to build a surrogate model based on their goals and move in the same directions, but also click on some specific parts of the images to either locally refine the image through dedicated mutation, or recombine images by choosing on each one some regions they like. Experiments validate the benefits of IELDM, especially in a situation where Latent Diffusion Model is challenged by complex input prompts.
Fichier principal
Vignette du fichier
gecco2023.pdf (5.35 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04570089 , version 1 (06-05-2024)

Identifiants

Citer

Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer, Olivier Teytaud. Interactive Latent Diffusion Model. GECCO 2023 - Genetic and Evolutionary Computation Conference, ACM SIGEVO, Jul 2023, Lisbon, Portugal. pp.586-596, ⟨10.1145/3583131.3590471⟩. ⟨hal-04570089⟩
54 Consultations
45 Téléchargements

Altmetric

Partager

More