Locally-Rank-One-Based Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images. Part II: a Filtering-Based Framework - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Computational Imaging Année : 2024

Locally-Rank-One-Based Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images. Part II: a Filtering-Based Framework

Résumé

This paper presents novel unmixing and demosaicing methods for snapshot spectral imaging (SSI) systems utilizing Fabry-Perot filters. Unlike conventional approaches that perform unmixing after image restoration or demosaicing, our proposed methods leverage Fabry-Perot filter deconvolution and extend the "pure pixel" framework to the SSI sensor patch level, enabling improved unmixing accuracy and introducing the concept of localized spectral purity. Through extensive experimentation on synthetically generated data and real images captured by SSI cameras, we demonstrate the superiority of our methods over state-of-the-art techniques. Furthermore, our results showcase the effectiveness of the proposed approach over our recently proposed joint unmixing and demosaicing method based on low-rank matrix completion.
Fichier principal
Vignette du fichier
kampgdgr_IEEE_TCI_Part_II_author_final.pdf (5.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04568405 , version 1 (08-06-2024)
hal-04568405 , version 2 (06-08-2024)

Identifiants

Citer

Kinan Abbas, Matthieu Puigt, Gilles Delmaire, Gilles Roussel. Locally-Rank-One-Based Joint Unmixing and Demosaicing Methods for Snapshot Spectral Images. Part II: a Filtering-Based Framework. IEEE Transactions on Computational Imaging, 2024, 10, pp.806 - 817. ⟨10.1109/TCI.2024.3402441⟩. ⟨hal-04568405v2⟩
152 Consultations
19 Téléchargements

Altmetric

Partager

More