Inexact subgradient methods for semialgebraic functions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Inexact subgradient methods for semialgebraic functions

Résumé

Motivated by the widespread use of approximate derivatives in machine learning and optimization, we study inexact subgradient methods with non-vanishing additive errors and step sizes. In the nonconvex semialgebraic setting, under boundedness assumptions, we prove that the method provides points that eventually fluctuate close to the critical set at a distance proportional to $\epsilon^\rho$ where $\epsilon$ is the error in subgradient evaluation and $\rho$ relates to the geometry of the problem. In the convex setting, we provide complexity results for the averaged values. We also obtain byproducts of independent interest, such as descent-like lemmas for nonsmooth nonconvex problems and some results on the limit of affine interpolants of differential inclusions.
Fichier principal
Vignette du fichier
main.pdf (328.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04562371 , version 1 (29-04-2024)

Identifiants

  • HAL Id : hal-04562371 , version 1

Citer

Jérôme Bolte, Tam Le, Éric Moulines, Edouard Pauwels. Inexact subgradient methods for semialgebraic functions. 2024. ⟨hal-04562371⟩
257 Consultations
83 Téléchargements

Partager

More