Using Structured Health Information for Controlled Generation of Clinical Cases in French - Archive ouverte HAL
Communication Dans Un Congrès Année : 2024

Using Structured Health Information for Controlled Generation of Clinical Cases in French

Résumé

Text generation opens up new prospects for overcoming the lack of open corpora in fields such as healthcare, where data sharing is bound by confidentiality. In this study, we compare the performance of encoder-decoder and decoder-only language models for the controlled generation of clinical cases in French. To do so, we fine-tuned several pre-trained models on French clinical cases for each architecture and generate clinical cases conditioned by patient demographic information (gender and age) and clinical features. Our results suggest that encoder-decoder models are easier to control than decoder-only models, but more
Fichier principal
Vignette du fichier
Codeine_clinicalNLP.pdf (231.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04558890 , version 1 (25-04-2024)

Identifiants

  • HAL Id : hal-04558890 , version 1

Citer

Hugo Boulanger, Nicolas Hiebel, Olivier Ferret, Karën Fort, Aurélie Névéol. Using Structured Health Information for Controlled Generation of Clinical Cases in French. The 6th Clinical Natural Language Processing Workshop At NAACL 2024 (ClinicalNLP 2024), Jun 2024, Mexico city, Mexico. ⟨hal-04558890⟩
230 Consultations
95 Téléchargements

Partager

More