Estimating weak periodic vector autoregressive time series - Archive ouverte HAL
Article Dans Une Revue Test Année : 2023

Estimating weak periodic vector autoregressive time series

Résumé

This article develops the asymptotic distribution of the least squares estimator of the model parameters in periodic vector autoregressive time series models (hereafter PVAR) with uncorrelated but dependent innovations. When the innovations are dependent, this asymptotic distributions can be quite different from that of PVAR models with independent and identically distributed (iid for short) innovations developed (Ursu and Duchesne in J Time Ser Anal 30:70-96, 2009). Modified versions of the Wald tests are proposed for testing linear restrictions on the parameters. These asymptotic results are illustrated by Monte Carlo experiments. An application to a bivariate real financial data is also proposed.
Fichier principal
Vignette du fichier
revised2weak_PVAR221222.pdf (549.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04549822 , version 1 (18-04-2024)

Identifiants

Citer

Yacouba Boubacar Maïnassara, Eugen Ursu. Estimating weak periodic vector autoregressive time series. Test, 2023, 32 (3), pp.958-997. ⟨10.1007/s11749-023-00859-w⟩. ⟨hal-04549822⟩
30 Consultations
35 Téléchargements

Altmetric

Partager

More