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Abstract

This article develops the asymptotic distribution of the least squares estimator of the model parameters in periodic
vector autoregressive time series models (hereafter PVAR) with uncorrelated but dependent innovations. When the
innovations are dependent, this asymptotic distributions can be quite different from that of PVAR models with in-
dependent and identically distributed (iid for short) innovations developed in Ursu and Duchesne (2009). Modified
versions of the Wald tests are proposed for testing linear restrictions on the parameters. These asymptotic results are
illustrated by Monte Carlo experiments. An application to a bivariate real financial data is also proposed.
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1. Introduction

Many phenomena observed over time are subject to seasonal effects, which are variations occurring at specific regular
time intervals. The autoregressive integrated moving average (ARIMA) model could be modified by employing the
seasonal differencing operator: if considered period magnitude is s, this operator subtracts from each observation the
corresponding value at s previous time instants. The result is the seasonal autoregressive integrated moving average
(SARIMA) model developed originally by Box and Jenkins (1970). This way of proceeding has been proven useful
when mean for a given season is not stationary across years (Hipel and McLeod, 1994). However, it turns out that many
seasonal time series cannot be filtered to achieve second-order stationarity due to the correlation structure of these time
series with the season (Vecchia, 1985b). For this reason a different procedure of accounting for seasonality has been
proposed in literature, leading to periodic models. The use of periodic models appears to be well-suited to deal with
many real life phenomena characterized by a seasonal behavior: climatology (Lu et al., 2010), hydrology (Vecchia,
1985a), macroeconomics (Franses and Paap, 2004) and engineering (Schlick et al., 2013). Multivariate models are
expected to be more useful in practice, since most real-life situations involve several variables and vector time series.
The maximum likelihood estimation (Lütkepohl, 2005) and the least squares (LS) method (Ursu and Duchesne, 2009)
are efficient methods to estimate the PVAR models. However, the innovations in these PVAR models have the iid
property. We refer to these as strong PVAR models, by opposition to weak PVAR models where the innovations are
only uncorrelated.

In recent years, a large part of the time series and econometric literature was devoted to weaken the independence
innovation assumption. This independence assumption is restrictive because it excludes conditional heteroscedastic-
ity and other forms of nonlinearity (Francq et al., 2005). Another argument in favor for considering the weak PVAR
models comes from Wang et al. (2005) as they found evidences of the existence of autoregressive conditional het-
eroskedastic (ARCH) effects in modelling daily streamflow series in China. They argued that, the strong periodic
autoregressive (hereafter PAR) models would perform better than the SARIMA model for capturing the ARCH effect
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in monthly flow series, but insufficient to fully capture the ARCH effects in daily flow series. Francq et al. (2011) in-
vestigate the asymptotic properties of weighted least squares (WLS) estimation for causal and invertible periodic
autoregressive moving average (PARMA) models with uncorrelated but dependent errors. Francq and Raı̈ssi (2007)
proposed a method to adjust the critical values of the portmanteau test for multiple autoregressive time series models
with nonindependent innovations.

This article is organized as follows. In Section 2, the weak PVAR model is introduced and the asymptotic prop-
erties of the least squares estimators are given in Section 3. An example of analytic computation of the asymptotic
variance matrices is also given in Section 3. Two weakly consistent estimators of the asymptotic variance matrix are
proposed in Section 4. In Section 5 it is shown how the standard Wald test must be adapted in the weak PVAR case
in order to test for general linearity constraints. This section is also of interest in the univariate framework because,
to our knowledge, this test has not been studied for weak PAR models. In Section 6, some simulation results are
reported, and in Section 7, an application to the daily returns of two European stock market indices, CAC 40 (Paris)
and DAX (Frankfurt), is made. Finally, Section 8 offers some concluding remarks.

2. Weak periodic vector autoregressive time series models

In this section, we present principal results on the least squares estimators in the unconstrained and constrained case
of the weak PVAR model.

Let Y = {Yt, t ∈ Z} be a stochastic process, where

Yt = (Yt(1), . . . ,Yt(d))⊤

represents a random vector of dimension d. The process Y is a PVAR process of order p(ν), ν ∈ {1, . . . , s} (s is a
predetermined value), if there exist d × d matrices Φk(ν) =

(
Φk,i j(ν)

)
i, j=1,...,d

, k = 1, . . . , p(ν) such that

Yns+ν =

p(ν)∑
k=1

Φk(ν)Yns+ν−k + ϵns+ν. (1)

The process ϵ := (ϵ t)t = (ϵns+ν)n∈Z can be interpreted as in Francq et al. (2011) as the linear innovation of
Y := (Yt)t = (Yns+ν)n∈Z, i.e. ϵ t = Yt −E[Yt |HY(t − 1)], whereHY(t − 1) is the Hilbert space generated by (Yu, u < t).
The innovation process ϵ is assumed to be a stationary sequence satisfying

(A0): E [ϵ t] = 0, Var (ϵ t) = Σϵ (ν) and Cov (ϵ t, ϵ t−h) = 0 for all t ∈ Z and all h , 0. The covariance matrix Σϵ (ν) is
assumed to be non-singular.

Under the above assumptions the process (ϵns+ν)n∈Z is called a weak multivariate periodic white noise. An example
of weak multivariate periodic white noise is the multivariate periodic generalized autoregressive conditional het-
eroscedastic (MPGARCH) model (see for instance Bibi (2018)). Many others univarites examples can also be find in
Francq et al. (2011) and can be extended to multivariate periodic white noise.

It is customary to say that (Yns+ν)n∈Z is a strong PVAR representation and we will do this henceforth if in (1)
(ϵns+ν)n∈Z is a strong multivariate periodic white noise, namely an iid sequence of random variables with mean 0
and common variance matrix. A strong white noise is obviously a weak white noise because independence entails
uncorrelatedness. Of course the converse is not true. In contrast with this previous definition, the representation (1)
is called a weak PVAR if no additional assumption is made on (ϵns+ν)n∈Z, that is if (ϵns+ν)n∈Z is only a weak periodic
white noise (not necessarily iid). It is clear from these definitions that the following inclusions hold:{

strong PVAR
}
⊂ {weak PVAR} .

Nonlinear models are becoming more and more employed because numerous real time series exhibit nonlinear dynam-
ics. For instance conditional heteroscedasticity can not be generated by PVAR models with iid noises.1 As mentioned

1To cite few univariates examples of nonlinear processes, let us mention the generalized autoregressive conditional heteroscedastic (GARCH),
the self-exciting threshold autoregressive (SETAR), the smooth transition autoregressive (STAR), the exponential autoregressive (EXPAR), the
bilinear, the random coefficient autoregressive (RCA), the functional autoregressive (FAR) (see Francq and Zakoı̈an (2019), Tong (1990) and Fan
and Yao (2008) for references on these nonlinear time series models).
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by Francq and Zakoı̈an (2005, 1998) in the case of autoregressive moving average (ARMA) models, many important
classes of nonlinear processes admit weak ARMA representations.

The main issue with nonlinear models is that they are generally hard to identify and implement. These technical
difficulties certainly explain the reason why the asymptotic theory of PVAR model estimation is mainly limited to the
strong PVAR model.

To derive some basic properties, it is convenient to write the model (1) in VAR representation:

Φ∗0Y∗n =
p∗∑

k=1

Φ∗kY∗n−k + ϵ
∗
n, (2)

where Y∗n = (Y⊤ns+s,Y⊤ns+s−1, . . . ,Y
⊤
ns+1)⊤ and ϵ∗n = (ϵ⊤ns+s, ϵ

⊤
ns+s−1, . . . , ϵ

⊤
ns+1)⊤ are (ds)× 1 random vectors. The autore-

gressive model order in (2) is given by p∗ = ⌊p/s⌋, where ⌊x⌋ denotes the smallest integer greater than or equal to the
real number x. The matrix Φ∗0, and the autoregressive coefficients Φ∗k, k = 1, . . . , p∗, all of dimension (ds) × (ds), are
given by the non-singular matrix:

Φ∗0 =



Id −Φ1(s) −Φ2(s) . . . −Φs−2(s) −Φs−1(s)
0 Id −Φ1(s − 1) . . . −Φs−3(s − 1) −Φs−2(s − 1)
...

. . .
...

0 0 0 . . . Id −Φ1(2)
0 0 0 . . . 0 Id


,

where Id denotes the d × d identity matrix, and:

Φ∗k =


Φks(s) Φks+1(s) . . . Φks+s−1(s)

Φks−1(s − 1) Φks(s − 1) . . . Φks+s−2(s − 1)
...

. . .
...

Φks−s+1(1) Φks−s+2(1) . . . Φks(1)

 ,
where k = 1, 2, . . . , p∗ and Φk(ν) = 0, k > p.
From (2) we can in principle deduce the properties of weak PVAR parameters estimation, identification and validation
from existing results on parameters estimation, identification and validation of the weak VARMA (Vector ARMA)
models (see for instance Boubacar Mainassara and Francq (2011); Boubacar Maı̈nassara (2012); Boubacar Maı̈nassara
and Kokonendji (2016); Boubacar Mainassara (2011); Boubacar Maı̈nassara and Saussereau (2018)). Therefore we
have preferred to work in the PVAR setting for various reasons. Firstly, in particular the results obtained directly in
terms of the univariate PAR representation are more directly usable because fewer parameters are involved and their
estimation is easier (see Francq et al. (2011) for more details). Secondly, the number of parameters in (2) is very huge,
which entails statistical difficulties. Finally the VAR representation (2) is so-called structural form and is not standard
when the matrixΦ∗0 , Ids. The structural PVAR representation (2) can be rewritten in a standard reduced PVAR form
if the matrixΦ∗0 is non singular, by multiplying (2) byΦ∗−1

0 and introducing the innovation process en = Φ
∗−1
0 ϵ

∗
n, with

non singular variance Φ∗−1
0 var(ϵ∗n)

(
Φ∗−1

0

)⊤
. This rescaling operation complicates the interpretation of the estimated

parameters and the derivation of their statistical properties in the original scale, since the covariance matrix of the error
term of the standard VARMA model now depends on the autoregressive parameters. The structural form (2) is mainly
used in econometric to introduce instantaneous relationships between economic variables. The reduced form is more
practical from a statistical viewpoint, because it gives the forecasts of each component of (Y∗n) according to the past
values of the set of the components. The above discussion shows that the PVAR representation (2) is not unique, that
is, a given process (Y∗n) can be written in reduced form or in structural form by pre-multiplying by any non singular
(ds × ds) matrix. Of course, in order to ensure the uniqueness of this representation, constraints are necessary for the
identifiability of the (p∗ + 2)d2s2 elements of the matrices involved in the PVAR equation (2).
Let det(A) be the determinant of the squared matrix A. Using general properties of VAR models, it follows that the
multivariate stochastic process {Y∗t } is causal if:

(A1): det
(
Φ∗0 −Φ

∗
1z − . . . −Φp∗zp∗

)
, 0, for all complex numbers z satisfying the condition |z| ≤ 1.
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Under Assumption (A1), there exists a sequence of constant matrices (Ci(ν))i≥0 such that, for ν = 1, 2, . . . , s,
∑∞

i=0 ∥Ci(ν)∥ <
∞ with C0(ν) = Id and

Yns+ν =

∞∑
i=0

Ci(ν)ϵns+ν−i, (3)

where the sequence of matrices ∥Ci(ν)∥ → 0 at a geometric rate as i → ∞. The ∥A∥ denotes the Euclidean norm of
the matrix A, that is ∥A∥ = {tr(AA⊤)}1/2, with tr(B) being the trace of the squared matrix B.

To establish the consistency of the least squares estimators, an additional assumption is needed.

(A2): The ds-dimensional process
(
ϵ∗n

)
n∈Z is ergodic and strictly stationary.

Note that Assumption (A2) is entailed by an iid assumption on ϵ∗n, but not by Assumption (A0).
For the asymptotic normality of least squares estimators, additional assumptions are also required. To control the

serial dependence of the stationary process (ϵ∗n)n∈Z, we introduce the strong mixing coefficients αϵ∗ (h) defined by

αϵ∗ (h) = sup
A∈F n

−∞,B∈F +∞n+h

|P (A ∩ B) − P(A)P(B)| ,

where F n
−∞ = σ(ϵ∗u, u ≤ n) and F +∞n+h = σ(ϵ∗u, u ≥ n + h).

We use ∥ · ∥ to denote the Euclidean norm of a vector. We will make an integrability assumption on the moment of
the noise and a summability condition on the strong mixing coefficients (αϵ∗ (k))k≥0.

(A3): We have E∥ϵ∗n∥4+2κ < ∞ and
∑∞

k=0 {αϵ∗ (k)}
κ

2+κ < ∞ for some κ > 0.

3. Unconstrained least squares estimators and least squares estimation with linear constraint on the parame-
ters.

In this section, we study the asymptotic properties of least squares estimators from a causal PVAR model. Let β(ν) =
(vec⊤{Φ1(ν)}, . . . , vec⊤{Φp(ν)(ν)})⊤ be a {d2 p(ν)} × 1 vector of parameters, where vec(A) corresponds to the vector
obtained by stacking the columns of A (Harville, 1997, Chapter 16.3) The PVAR model in (1) has d2 ∑s

ν=1 p(ν)
autoregressive parameters Φk(ν), k = 1, . . . , p(ν), ν = 1, . . . , s, and s additional d × d covariance matrices Σϵ (ν),
ν = 1, . . . , s. For multivariate processes, the number of parameters can be quite large; for vector periodic processes,
the inflation of parameters is due to the s seasons. For example, in the case of bivariate monthly data where d = 2,
s = 12, and, in the simplest case p(ν) ≡ 1, this means that 48 independent autoregressive parameters must be estimated
(by comparison, a traditional VAR(1) process relies on four independent parameters). In view of these considerations,
we consider estimation in the unrestricted case but also in the situation where the parameters of the same season ν
satisfy the relation:

β(ν) = R(ν)ξ(ν) + b(ν), (4)

where R(ν) is a known {d2 p(ν)} × K(ν) matrix of rank K(ν), b(ν) a known {d2 p(ν)} × 1 vector and ξ(ν) represents
a K(ν) × 1 vector of unknown parameters. Letting R(ν) = Id2 p(ν), b(ν) = 0, ν = 1, . . . , s give what we call the full
unconstrained case. In general, the matrices R(ν) and the vectors b(ν) allow for linear constraints on the parameters
of the same season ν, ν = 1, . . . , s.

This linear constraint includes the important special case of parameters set to zero on certain components ofΦk(ν),
ν = 1, . . . , s. In practice, a two-step procedure could consist of fitting a full unconstrained model, and, in a second
stage of inference, the estimators which are statistically not significant could be considered known zero parameters,
providing frequently more parsimonious models.

Consider the time series data Yns+ν, n = 0, 1, . . . ,N − 1, ν = 1, . . . , s, giving a sample size equal to n = Ns. Let

Z(ν) =
(
Yν,Ys+ν, . . . ,Y(N−1)s+ν

)
, (5)

E(ν) =
(
ϵν, ϵ s+ν, . . . , ϵ(N−1)s+ν

)
, (6)

X(ν) = (X0(ν), . . . ,XN−1(ν)) , (7)
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be d × N, d × N and {dp(ν)} × N random matrices, where

Xn(ν) = (Y⊤ns+ν−1, . . . ,Y
⊤
ns+ν−p(ν))

⊤,

n = 0, 1, . . . ,N − 1, denote {dp(ν)} × 1 random vectors. The PVAR model can be reformulated as:

Z(ν) = B(ν)X(ν) + E(ν), ν = 1, . . . , s, (8)

where the model parameters are collected in the d × {dp(ν)} matrix B(ν) which is defined as:

B(ν) =
(
Φ1(ν), . . . ,Φp(ν)(ν)

)
. (9)

Vectorizing, we obtain:

z(ν) = {X⊤(ν) ⊗ Id}vec{B(ν)} + vec{E(ν)},
= {X⊤(ν) ⊗ Id}β(ν) + e(ν),
= {X⊤(ν) ⊗ Id}{R(ν)ξ(ν) + b(ν)} + e(ν), (10)

where z(ν) = vec{Z(ν)}, β(ν) = vec{B(ν)}, e(ν) = vec{E(ν)}.
The covariance matrix of the random vector e(ν) is IN ⊗ Σϵ (ν).
The multivariate least squares estimators of ξ(ν), ν = 1, . . . , s are obtained by minimizing the generalized least

squares criterion:

S G(ξ) =
s∑

ν=1

e⊤(ν){IN ⊗ Σϵ (ν)}−1e(ν), (11)

where ξ = (ξ⊤(1), . . . , ξ⊤(s))⊤ represents a {
∑s
ν=1 K(ν)} × 1 vector. It may be worth nothing to mention that the GLS

and LS estimation in a multiple equation model are identical if the regressors in all equations are the same (see for
example a result for VAR models in Lütkepohl (2005, p.71)). In the next subsections, we discuss separately the unre-
stricted and restricted cases.

3.1. Unconstrained least squares estimators

The least squares estimators are obtained by minimizing the ordinary least squares:

S (β) =
s∑

ν=1

e⊤(ν)e(ν), (12)

where β = (β⊤(1), . . . ,β⊤(s))⊤ is the {d2 ∑s
ν=1 p(ν)} × 1 vector of model parameters. To obtain the least squares

estimators, we differentiate S (β) with respect to each parameter Φk(ν), k = 1, . . . , p(ν), ν = 1, . . . , s. Thus we obtain
easily:

∂S (β)
∂vec{Φk(ν)}

= −2
N−1∑
n=0

(Yns+ν−k ⊗ ϵns+ν), k = 1, . . . , p(ν), ν = 1, . . . , s.

Setting the derivatives equal to zero, k = 1, . . . , p(ν), gives the following system for a given season ν:

N−1∑
n=0

{Xn(ν) ⊗ ϵns+ν} = 0,

where 0 is the {d2 p(ν)} × 1 null vector. Since ϵns+ν = Yns+ν − {X⊤n (ν) ⊗ Id}β(ν), the normal equations at season ν are:

N−1∑
n=0

{Xn(ν) ⊗ Yns+ν} =

N−1∑
n=0

{
Xn(ν)X⊤n (ν) ⊗ Id

}β(ν).
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Consequently, the least squares estimators of β(ν) satisfy the relation:

β̂(ν) =
[
{X(ν)X⊤(ν)}−1X(ν) ⊗ Id

]
z(ν),

and the residuals are ϵ̂ns+ν = Yns+ν − {X⊤n (ν) ⊗ Id}β̂(ν). Using the properties of the vec(·) operator, it should be noted
that an alternative expression for the least squares estimators is given by:

B̂(ν) = Z(ν)X⊤(ν){X(ν)X⊤(ν)}−1. (13)

The asymptotic properties of the least squares estimators in the unrestricted case are stated in Theorem 3.1. The

symbols ’
d
→’, ’

p
→’ and ’

a.s.
→’ stand for convergence in distribution, in probability and almost surely, respectively, and

Nd(µ,Σ) denotes a d-dimensional normal distribution with mean µ and covariance matrix Σ.

Theorem 3.1. Let a time series be generated by equation (1). Under the assumptions (A0), (A1), (A2) and (A3), for
ν = 1, . . . , s, we have

N−1/2
N−1∑
n=0

vec{ϵns+νX⊤n (ν)}
d
→ Nd2 p(ν) (0,Ψ(ν)) , (14)

Ψ(ν) =

∞∑
h=−∞

E
(
Xn(ν)X⊤n−h(ν) ⊗ ϵns+νϵ

⊤
(n−h)s+ν

)
β̂(ν)

a.s.
→ β(ν), (15)

N1/2{β̂(ν) − β(ν)}
d
→ Nd2 p(ν) (0,Θ(ν)) , (16)

Θ(ν) =
(
Ω−1(ν) ⊗ Id

)
Ψ(ν)

(
Ω−1(ν) ⊗ Id

)
where Ω(ν) corresponds to the {dp(ν)} × {dp(ν)} covariance matrix of the {dp(ν)} × 1 random vector Xn(ν). Further-
more, we also hawe

N1/2{β̂ − β}
d
→ Nsd2 p(ν) (0,Θ) ,

where the asymptotic covariance matrixΘ is a block matrix, with the asymptotic variances given byΘ(ν), ν = 1, . . . , s,
and the asymptotic covariances given by:

lim
N→∞

cov
(
N1/2{β̂(ν) − β(ν)},N1/2{β̂(ν′) − β(ν′)}

)
=

(
Ω−1(ν) ⊗ Id

) ∞∑
h=−∞

E
(
Xn(ν)X⊤n−h(ν′) ⊗ ϵns+νϵ

⊤
(n−h)s+ν′

) (
Ω−1(ν′) ⊗ Id

)
,

for ν , ν′ and ν, ν′ = 1, . . . , s.

The proof of Theorem 3.1 is postponed to Section A.

Remark 3.1. When s = 1, we retrieve the well-known result on weak VAR obtained by Francq and Raı̈ssi (2007).

Remark 3.2. If the moving average orders are null and when d = 1 we retrieve the results obtained on weak periodic
autoregressive model by (Francq et al., 2011).

Remark 3.3. In the standard strong PVAR case, i.e. when (A2) is replaced by the assumption that
(
ϵ∗n

)
n∈Z is an iid

sequence, we have
Ψ(ν) = Ω(ν) ⊗ Σϵ (ν).

Thus the asymptotic covariance matrix is reduced as

ΘS (ν) := {Ω−1(ν) ⊗ Id}{Ω(ν) ⊗ Σϵ (ν)}{Ω−1(ν) ⊗ Id} = Ω
−1(ν) ⊗ Σϵ (ν),

and we obtain the result of Ursu and Duchesne (2009).
6



Generally, when the noise is not an independent sequence, this simplification can not be made and we have Ψ(ν) ,
Ω(ν) ⊗ Σϵ (ν). The true asymptotic covariance matrix Θ(ν) obtained in the weak PVAR framework can be very
different from ΘS (ν). As a consequence, for the statistical inference on the parameter, the ready-made software used
to fit PVAR do not provide a correct estimation of Θ(ν) for weak PVAR processes because the standard time series
analysis software use empirical estimators of ΘS (ν). The problem also holds in the weak PARMA case (see Francq
et al. (2011) and the references therein). This is why it is interesting to find an estimator of Θ(ν) which is consistent
for both weak and strong PVAR cases.

3.2. Least squares estimation with linear constraints on the parameters
When the parameters satisfy the linear constraint (4), the least squares estimators of ξ(ν), ν = 1, . . . , s, minimize the
generalized criterion (11), which is not equivalent to (12), see Lütkepohl (2005), amongst others. Recall that from (10)
we have the following relation:

e(ν) = z(ν) − {X⊤(ν) ⊗ Id}{R(ν)ξ(ν) + b(ν)},

which is convenient to derive the asymptotic properties of the least squares estimator of ξ(ν).
Proceeding as in the previous section, it is possible to show that the least squares estimator ξ̂(ν) of ξ(ν) is given by:

ξ̂(ν) =
[
R⊤(ν){X(ν)X⊤(ν) ⊗ Σ−1

ϵ (ν)}R(ν)
]−1

R⊤(ν){X(ν) ⊗ Σ−1
ϵ (ν)}

×
[
z(ν) − {X⊤(ν) ⊗ Id}b(ν)

]
.

Furthermore, the following relation is satisfied:

N1/2{ξ̂(ν) − ξ(ν)}

= N1/2
[
R⊤(ν){X(ν)X⊤(ν) ⊗ Σ−1

ϵ (ν)}R(ν)
]−1

R⊤(ν){X(ν) ⊗ Σ−1
ϵ (ν)}e(ν)

=

[
R⊤(ν)

1
N
{X(ν)X⊤(ν) ⊗ Σ−1

ϵ (ν)}R(ν)
]−1

R⊤(ν)

× {Idp(ν) ⊗ Σ
−1
ϵ (ν)}N−1/2vec{E(ν)X⊤(ν)}.

Consequently, under the conditions of Theorem 3.1, the estimator ξ̂(ν) is consistent for ξ(ν), and ξ̂(ν) follows asymp-
totically a normal distribution, that is:

N1/2{ξ̂(ν) − ξ(ν)}
d
→ NK(ν)

(
0,Θξ(ν)

)
, (17)

where

Θξ(ν) =
[
R⊤(ν){Ω(ν) ⊗ Σ−1

ϵ (ν)}R(ν)
]−1

R⊤(ν){Idp(ν) ⊗ Σ
−1
ϵ (ν)}Ψ(ν)

× {Idp(ν) ⊗ Σ
−1
ϵ (ν)}R(ν)

([
R⊤(ν){Ω(ν) ⊗ Σ−1

ϵ (ν)}R(ν)
]−1

)⊤
.

Moreover we have

{Idp(ν) ⊗ Σ
−1
ϵ (ν)}Ψ(ν){Idp(ν) ⊗ Σ

−1
ϵ (ν)}

=
(
Idp(ν) ⊗ Σ

−1
ϵ (ν)

) ∞∑
h=−∞

E
(
Xn(ν)X⊤n−h(ν) ⊗ ϵns+νϵ

⊤
(n−h)s+ν

) (
Idp(ν) ⊗ Σ

−1
ϵ (ν)

)
=

∞∑
h=−∞

E
[
Xn(ν)X⊤n−h(ν) ⊗ Σ−1

ϵ (ν)ϵns+νϵ
⊤
(n−h)s+νΣ

−1
ϵ (ν)

]
.

It should be noted that the estimator ξ̂(ν) is unfeasible in practice, since it relies on the unknown matrix Σϵ (ν). A
feasible estimator is given by:

ˆ̂ξ(ν) =
[
R⊤(ν){X(ν)X⊤(ν) ⊗ Σ̃−1

ϵ (ν)}R(ν)
]−1

R(ν){X(ν) ⊗ Σ̃−1
ϵ (ν)}

× [z(ν) − {X⊤(ν) ⊗ Id}b(ν)],
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where Σ̃ϵ (ν) denotes a consistent estimator of the covariance matrix Σϵ (ν) for ν = 1, . . . , s. A possible candidate is
obtained from the unconstrained least squares estimators:

Σ̃ϵ (ν) = {N − dp(ν)}−1
{
Z(ν) − B̂(ν)X(ν)

} {
Z(ν) − B̂(ν)X(ν)

}⊤
,

where B̂(ν) represents the unconstrained least squares estimators (13) obtained in Section 3.1. The resulting estimator
of β(ν) is given by ˆ̂β(ν) = R(ν)ˆ̂ξ(ν) + b(ν), and its asymptotic distribution is normal:

N1/2{
ˆ̂β(ν) − β(ν)}

d
→ Nd2 p(ν)

(
0,R(ν)Θξ(ν)R⊤(ν)

)
.

The proof of the above result follows, using arguments similar to those of Theorem 3.1.

Remark 3.4. In the standard strong PVAR case, i.e. when (A2) is replaced by the assumption that
(
ϵ∗n

)
n∈Z is an iid

sequence and in view of Remark 3.3, we have

N1/2{ξ̂(ν) − ξ(ν)}
d
→ NK(ν)

(
0,ΘξS (ν) =:

[
R⊤(ν){Ω(ν) ⊗ Σ−1

ϵ (ν)}R(ν)
]−1

)
,

N1/2{
ˆ̂β(ν) − β(ν)}

d
→ Nd2 p(ν)

(
0,R(ν)ΘξS (ν)R⊤(ν)

)
,

which are the results obtained by Ursu and Duchesne (2009).

3.3. Example of analytic computation of Θ(ν) and ΘS (ν)
Consider a bi-variate periodic white noise defined by:

ϵns+ν =

(
ϵ1,ns+ν

ϵ2,ns+ν

)
=M⊤

ν

(
η1,ns+νη1,ns+ν−1η1,ns+ν−2 · · · η1,ns+ν−m

η2,ns+νη2,ns+ν−1η2,ns+ν−2 · · · η2,ns+ν−m

)
, (18)

where m > 0 is a fixed integer, ηt = (η1,t, η2,t)⊤ iid N(0, I2) and Mν is the upper triangular matrix satisfying the
equation MT

ν Mν = Σϵ (ν). The periodic process ϵns+ν is a weak white noise because E[ϵ t] = 0 for all t, E[ϵ tϵ
⊤
t′ ] = 0

for all t , t′, E[ϵns+νϵ
⊤
ns+ν] = Σϵ (ν). The variables ϵ t and ϵ t′ are dependent if |t − t′| ≤ m but they are independent for

|t− t′| > m. The process (18) can be viewed as a multivariate extension of univariate weak noises considered in Francq
et al. (2011).
The results of Section 3 is particularized in the following PVAR case of order one with s = 2 of the form:{

Y2n+1 = Φ(1)Y2n + ϵ2n+1
Y2n+2 = Φ(2)Y2n+1 + ϵ2n+2

, (19)

where the unknown parameter is β(ν) = vec(Φ(ν)) and the innovation process (ϵ2n+ν)n∈Z is given by (18). For simpli-
fication, we assume that in (19), Φ(ν) and Σν are diagonals:

Φ(ν) =
(
ϕ11(ν) 0

0 ϕ22(ν)

)
and Σϵ (ν) =

(
σ11(ν) 0

0 σ22(ν)

)
.

From (2) and under (A1) we deduce that:{
Y2n+1 = ϵ2n+1 +Φ

−1(2)
∑

i≥1Φ(2)iΦi(1)ϵ2(n−i)+2
Y2n+2 = Φ(2)ϵ2n+1 +

∑
i≥0Φ

i(2)Φi(1)ϵ2(n−i)+2
. (20)

With our notations Xn(ν) = Y2n+ν−1 and by using (20), it follows that:

Ω(1) = E
(
Y2nY⊤2n

)
=

(
Ω11(1) 0

0 Ω22(1)

)
and Ω(2) = E

(
Y2n+1Y⊤2n+1

)
=

(
Ω11(2) 0

0 Ω22(2)

)
, (21)
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where for i = 1, 2 we have

Ωii(1) =
ϕ2

ii(2)σii(1)
(
1 − ϕ2

ii(1)ϕ2
ii(2)

)
+ σii(2)

1 − ϕ2
ii(1)ϕ2

ii(2)
, and Ωii(2) =

ϕ2
ii(2)σii(1)

(
1 − ϕ2

ii(1)ϕ2
ii(2)

)
+ σii(2)ϕ2

ii(1)ϕ2
ii(2)

ϕ2
ii(2)

(
1 − ϕ2

ii(1)ϕ2
ii(2)

) . (22)

In view of Remark 3.3 and using (21), a simple calculation implies that

ΘS (ν) = Ω−1(ν) ⊗ Σϵ (ν) =

Ω−1
11 (ν)Σϵ (ν) 0

0 Ω−1
22 (ν)Σϵ (ν)

 , ν = 1, 2, (23)

where Ωii(1), Ωii(2) are given by (22) and we obtain the result of Ursu and Duchesne (2009).
We now investigate a similar tractable expression for Ψ(ν) =

∑∞
h=−∞ E

(
Xn(ν)X⊤n−h(ν) ⊗ ϵns+νϵ

⊤
(n−h)s+ν

)
. Using (18) and

(20), the matrix Ψ(ν) is given by

Ψ(1) = Diag
(
Ψ11(1),Ψ22(1),Ψ33(1),Ψ44(1)

)
and Ψ(2) = Diag

(
Ψ11(2),Ψ22(2),Ψ33(2),Ψ44(2)

)
, (24)

where

Ψ11(1) = 3m−1ϕ2
11(2)σ2

11(1) + σ11(1)σ11(2)


⌊ m−1

2 ⌋∑
i=0

3m−2iϕ2i
11(1)ϕ2i

11(2) +
ϕ

2(⌊ m−1
2 ⌋+1)

11 (1)ϕ2(⌊ m−1
2 ⌋+1)

11 (2)

1 − ϕ2
11(1)ϕ2

11(2)

 ,
Ψ22(1) = ϕ2

11(2)σ11(1)σ22(1) +
σ22(1)σ11(2)

1 − ϕ2
11(1)ϕ2

11(2)
, Ψ33(1) = ϕ2

22(2)σ11(1)σ22(1) +
σ11(1)σ22(2)

1 − ϕ2
22(1)ϕ2

22(2)
,

Ψ44(1) = 3m−1ϕ2
22(2)σ2

22(1) + σ22(1)σ22(2)


⌊ m−1

2 ⌋∑
i=0

3m−2iϕ2i
22(1)ϕ2i

22(2) +
ϕ

2(⌊ m−1
2 ⌋+1)

22 (1)ϕ2(⌊ m−1
2 ⌋+1)

22 (2)

1 − ϕ2
22(1)ϕ2

22(2)

 ,
Ψ11(2) = 3mσ2

11(1) +
σ2

11(2)

ϕ2
11(2)


⌊ m

2 ⌋∑
i=1

3m−2i+1ϕ2i
11(1)ϕ2i

11(2) +
ϕ

2(⌊ m
2 ⌋+1)

11 (1)ϕ2(⌊ m
2 ⌋+1)

11 (2)

1 − ϕ2
11(1)ϕ2

11(2)

 ,
Ψ22(2) = σ11(1)σ22(1) + σ22(2)σ11(2)

ϕ2
11(1)

1 − ϕ2
11(1)ϕ2

11(2)
, Ψ33(2) = σ11(1)σ22(1) + σ11(2)σ22(2)

ϕ2
22(1)

1 − ϕ2
22(1)ϕ2

22(2)
,

Ψ44(2) = 3mσ2
22(1) +

σ2
22(2)

ϕ2
22(2)


⌊ m

2 ⌋∑
i=1

3m−2i+1ϕ2i
22(1)ϕ2i

22(2) +
ϕ

2(⌊ m
2 ⌋+1)

22 (1)ϕ2(⌊ m
2 ⌋+1)

22 (2)

1 − ϕ2
22(1)ϕ2

22(2)

 .
From (24) we deduce that

Θ(ν) =
(
Ω−1(ν) ⊗ Id

)
Ψ(ν)

(
Ω−1(ν) ⊗ Id

)
, ν = 1, 2, (25)

where Ωii(1), Ωii(2) are given by (22) for i = 1, 2.
For instance when

Φ(1) =
(
0.3 0.0
0.0 −0.6

)
, Φ(2) =

(
−0.7 0.0
0.0 0.15

)
, Σϵ (1) =

(
1.5 0.0
0.0 2.5

)
and Σϵ (2) =

(
1 0.0

0.0 0.5

)
we have

ΘS (1) =


0.84 0.00 0.00 0.00
0.00 1.40 0.00 0.00
0.00 0.00 2.68 0.00
0.00 0.00 0.00 4.46

 , ΘS (2) =


0.69 0.00 0.00 0.00
0.00 0.34 0.00 0.00
0.00 0.00 0.38 0.00
0.00 0.00 0.00 0.19

 ,
and the analytic computation of Θ(ν) is given for m = 1, 2 in the following Table.
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ν Θ(ν)
m = 1 m = 2

ν = 1


1.79 0.00 0.00 0.00
0.00 1.40 0.00 0.00
0.00 0.00 2.68 0.00
0.00 0.00 0.00 12.42



2.48 0.00 0.00 0.00
0.00 1.40 0.00 0.00
0.00 0.00 2.68 0.00
0.00 0.00 0.00 13.32


ν = 2


3.23 0.00 0.00 0.00
0.00 1.79 0.00 0.00
0.00 0.00 0.56 0.00
0.00 0.00 0.00 2.71



9.72 0.00 0.00 0.00
0.00 1.79 0.00 0.00
0.00 0.00 0.56 0.00
0.00 0.00 0.00 8.13


For this particular weak noise, we draw the conclusion that the discrepancy between the two matrices Θ(ν) and ΘS (ν)
is important even for small m. For statistical inference problem, including in particular, the significance tests on the
parameters, the assumption of independent errors can be quite misleading when analyzing data from PVAR models
with dependent errors. Thus the standard methodology needs however to be adapted to take into account the possible
lack of independence of the error terms.

4. Estimating the asymptotic variance matrix

For statistical inference problem, the asymptotic variance Θ(ν) has to be estimated. In particular Theorem 3.1 can be
used to obtain confidence intervals and significance tests for the parameters.

4.1. Estimation of the asymptotic matrix Ω(ν)
The matrix Ω(ν) can be estimated empirically by the square matrix Ω̂N(ν) of order dp(ν) defined by:

Ω̂N(ν) =
1
N

Xn(ν)X⊤n (ν). (26)

The convergence of Ω̂N(ν) to Ω(ν) is proved in (53).
In the standard strong PVAR case, in view of remark 3.3, we have Θ̂S (ν) := Ω̂−1

N (ν)⊗Σ̃ϵ (ν). Thus Θ̂S (ν) is a consistent
estimator of ΘS (ν). In the general weak PVAR case, this estimator is not consistent when Ψ(ν) , Ω(ν) ⊗ Σϵ (ν). So
we need a consistent estimator of Ψ(ν).

4.2. Estimation of the asymptotic matrix Ψ(ν)
For all n ∈ Z, let

Wn(ν) := vec{ϵns+νX⊤n (ν)}. (27)

We shall see in the proof of Theorem 3.1 that

Ψ(ν) = lim
N→∞

var

 1
√

N

N−1∑
n=0

Wn(ν)

 = ∞∑
h=−∞

cov (Wn(ν),Wn−h(ν)) . (28)

The estimation of the long-run variance (LRV) matrix Ψ(ν) is more complicated. In the literature, two types of esti-
mators are generally employed: heteroskedasticity and autocorrelation consistent (HAC) estimators based on kernel
methods (see Newey and West (1987) and Andrews (1991) for general references, and Francq and Zakoı̈an (2007) for
an application to testing strong linearity in weak ARMA models) and the spectral density estimators (see e.g. (Berk,
1974) and den Haan and Levin (1997) for a general reference; see also Boubacar Mainassara and Francq (2011) for
an application to a weak VARMA model).
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4.2.1. Spectral density estimation of LRV matrix Ψ(ν)
Following the arguments developed in Boubacar Mainassara et al. (2012), the matrix Ψ(ν) can be estimated using
Berk’s approach (see Berk (1974)). More precisely, by interpreting Ψ(ν)/2π as the spectral density of the stationary
process (Wn(ν))n∈Z evaluated at frequency 0, we can use a parametric autoregressive estimate of the spectral density
of (Wn(ν))n∈Z in order to estimate the matrix Ψ(ν).
The process (Wn(ν))n∈Z is a measurable function of {ϵns+ν−k, k ≥ 0}. The stationary process (Wn(ν))n∈Z admits the
following Wold decomposition Wn(ν) = uns+ν +

∑∞
k=1 ψk(ν)uns+ν−k, where (uns+ν)n∈Z is a (d2 p(ν))−variate periodic

weak white noise with variance matrix Σu(ν).
Assume that Σu(ν) is non-singular, that

∑∞
k=1 ∥ψk(ν)∥ < ∞, and that det(Id2 p(ν) +

∑∞
k=1 ψk(ν)zk) , 0 if |z| ≤ 1. Then

(Wn(ν))n∈Z admits a weak multivariate AR(∞) representation (see Akutowicz (1957)) of the form

Φ(L, ν)Wn(ν) :=Wn(ν) −
∞∑

k=1

Φk(ν)Wn−k(ν) = uns+ν, (29)

such that
∑∞

k=1 ∥Φk(ν)∥ < ∞ and det {Φ(z, ν)} , 0 if |z| ≤ 1.
Thanks to the previous remarks, the estimation of Ψ(ν) is therefore based on the following expression

Ψ(ν) = Φ−1(1, ν)Σu(ν)Φ−1(1, ν).

Consider the regression of Wn(ν) on Wn−1(ν), . . . ,Wn−r(ν) defined by

Wn(ν) =
r∑

k=1

Φr,k(ν)Wn−k(ν) + ur,ns+ν, (30)

where ur,ns+ν is uncorrelated with Wn−1(ν), . . . ,Wn−r(ν). Since Wn(ν) is not observable, we introduce Ŵn(ν) ∈ Rd2 p(ν)

obtained by replacing ϵns+ν by ϵ̂ns+ν and β(ν) by β̂(ν) in (27):

Ŵn(ν) = vec{ϵ̂ns+νX⊤n (ν)} , (31)

where ϵ̂ns+ν represents the unconstrained least squares residual.
Let Φ̂r(z, ν) = Idp(ν) −

∑r
k=1 Φ̂r,k(ν)zk, where Φ̂r,1(ν), . . . , Φ̂r,r(ν) denote the coefficients of the LS regression of Ŵn(ν)

on Ŵn−1(ν), . . . , Ŵn−r(ν). Let ûr,ns+ν be the residuals of this regression and let Σ̂ûr (ν) be the empirical variance of
ûr,ν, . . . , ûr,(N−1)s+ν.
In the case of linear processes with independent innovations, Berk (1974) has shown that the spectral density can be
consistently estimated by fitting autoregressive models of order r = r(N), whenever r tends to infinity and r3/N tends
to 0 as N tends to infinity. There are differences with Berk (1974): (Wn(ν))n∈Z is multivariate, is not directly observed
and is replaced by (Ŵn(ν))n∈Z. It is shown that this result remains valid for the multivariate linear process (Wn(ν))n∈Z
with non-independent innovations (see Boubacar Mainassara et al. (2012); Boubacar Mainassara and Francq (2011),
for references in weak (multivariate) ARMA models).
The asymptotic study of the estimator of Ψ(ν) using the spectral density method is given in the following theorem.

Theorem 4.1. In addition to the assumptions of Theorem 3.1, assume that the process (Wn(ν))t∈Z defined in (27)
admits a periodic VAR(∞) representation (29), where ∥Φk(ν)∥ = o(k−2) as k → ∞, the roots of det(Φ(z, ν)) = 0 are
outside the unit disk, and Σu(ν) = var(uns+ν) is non-singular. Moreover we assume that E∥ϵ∗n∥8+4κ < ∞ for some κ > 0.
Then, the spectral estimator of Ψ(ν):

Ψ̂SP(ν) := Φ̂−1
r (1, ν)Σ̂ûr (ν)Φ̂

′−1
r (1, ν)

p
→ Ψ(ν) = Φ−1(1, ν)Σu(ν)Φ−1(1, ν)

when r = r(N)→ ∞ and r3/N → 0 as N → ∞.

The proof of this theorem is similar to that given by (Boubacar Maı̈nassara and Ilmi Amir, 2022, Theorem 3) and it is
omitted.
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4.2.2. HAC estimation of LRV matrix Ψ(ν)
Let

Λh(ν) = cov (Wn(ν),Wn−h(ν)) = E
(
Wn(ν)W⊤

n−h(ν)
)
. (32)

The sum
∑∞

h=−∞ Λh(ν) is well defined (see the proof of Theorem 3.1). From the stationarity of the centered process
(Wn(ν))n∈Z and by the Lebesgue theorem, we have

Ψ(ν) = lim
N→∞

var

 1
√

N

N−1∑
n=0

Wn(ν)

 = lim
N→∞

1
N

N−1∑
n=0

N−1∑
n′=0

cov {Wn(ν),Wn′ (ν)}

= lim
N→∞

1
N

N−1∑
h=−N+1

(N − |h|) cov {Wn(ν),Wn−h(ν)} =
∞∑

h=−∞

Λh(ν). (33)

Under the assumptions of Theorem 3.1, the moments Λh(ν) are consistently estimated by Λ̂h(ν), for 0 ≤ h < N,

Λ̂h(ν) =
1
N

N−h−1∑
n=0

Ŵn(ν)Ŵ⊤
n−h(ν) and Λ̂−h(ν) = Λ̂⊤h (ν).

This raises the question of whether matrix

Ψ̌(ν) =
N−1∑

h=−N+1

Λ̂h(ν)

would be a consistent estimator of Ψ(ν). The answer is clearly negative since, for all N,

Ψ̌(ν) =
1
N

N−1∑
n=0

Ŵn(ν)


2

=
1
N

N−1∑
n=0

Xn(ν) ⊗ ϵ̂ns+ν


2

=
1
N

(
∂S (β̂)
∂β

)2

= 0.

Note that when the index |h| in (33) is large, the moments Λh(ν) are likely to be poorly estimated since their estimators
are based on only few observations. The classical solution to get around this problem is to weight the empirical
moments Λ̂h(ν). To estimate Ψ(ν), we consider a sequence of real numbers (bN)N∈N such that

bN → 0 and Nb
10+4κ
κ

N → ∞ as N → ∞, (34)

and a weight function f : R → R which is bounded, with compact support [−a, a] and continuous at the origin with
f (0) = 1. Note that under the above assumptions, we have

bN

∑
|h|<N

| f (hbN)| = O(1). (35)

Examples of such weight functions can be found in Boubacar Maı̈nassara (2014) and are: the truncated uniform or
rectangular (REC) window f (x) = 1[−1,1](x), the Bartlett (BAR) window f (x) = (1 − |x|)1[−1,1](x), the quadratic-
spectral window

f (x) =
25

12π2x2

(
sin (6πx/5)

6πx/5
− cos (6πx/5)

)
or the Parzen (PAR) window

f (x) =


1 − 6x2 + 6|x|3 if |x| ≤ 1/2
2(1 − |x|)3 if 1/2 ≤ |x| ≤ 1
0 otherwise

. (36)

Consider the matrix

Ψ̂HAC(ν) :=
TN∑

h=−TN

f (hbN)Λ̂h(ν) and TN =

⌊
a

bN

⌋
,

where ⌊x⌋ denotes the integer part of the real x.
We are now able to state the following theorem, which shows the weak consistency of an empirical estimator of
Ψ̂HAC(ν).
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Theorem 4.2. Under the assumptions of Theorem 3.1 and if the sequence (bN)N≥0 is chosen such that (34) is satisfied,
we have

Ψ̂HAC(ν)
p
→ Ψ(ν) as N → ∞.

The proof of Theorem 4.2 is postponed to Section A.
Theorems 4.1 and 4.2, and (26) show that

Θ̂SP(ν) :=
(
Ω̂−1(ν) ⊗ Id

)
Ψ̂SP(ν)

(
Ω̂−1(ν) ⊗ Id

)
(37)

and Θ̂HAC(ν) :=
(
Ω̂−1(ν) ⊗ Id

)
Ψ̂HAC(ν)

(
Ω̂−1(ν) ⊗ Id

)
(38)

are weakly consistent estimators of Θ(ν).

5. Testing linear restrictions about the parameter

In addition to the K(ν) linear constraints imposed in Section 3.2, the parameter may satisfy other linear constraints
which can be interesting to test (in particular Φp(ν) = 0, ν = 1, . . . , s). Theorems 4.1-4.2 and (17) can be exploited to
test s0(ν) linear constraints on the elements of the free parameter ξ(ν). The null hypothesis takes the form

H0 : R0(ν)ξ(ν) = r0(ν), ν = 1, . . . , s

where R(ν) is a known {s0(ν)} × K(ν) matrix of rank s0(ν) and r0(ν) is a known {s0(ν)}-dimensional vector. The Wald
principle is employed frequently for testing H0. We now examine if this principle remains valid in the non standard
framework of weak PVAR models.
From (17), we deduce that

N1/2{R0(ν)ξ̂(ν) − r0(ν)}
d
→ Ns0(ν)

(
0,R0(ν)Θξ(ν)R⊤0 (ν)

)
. (39)

Let

Θ̂ξ(ν) =
[
R⊤(ν){Ω̂(ν) ⊗ Σ̂

−1
ϵ (ν)}R(ν)

]−1
R⊤(ν){Idp(ν) ⊗ Σ̂

−1
ϵ (ν)}Ψ̂(ν)

× {Idp(ν) ⊗ Σ̂
−1
ϵ (ν)}R(ν)

([
R⊤(ν){Ω̂(ν) ⊗ Σ̂

−1
ϵ (ν)}R(ν)

]−1
)⊤

(40)

be a consistent estimator of Θξ(ν), where Ω̂(ν), Σ̂ϵ (ν) and Ψ̂(ν) are consistent estimators of Ω(ν), Σϵ (ν) and Ψ(ν), as
defined in Section 4. In view of (39), under the assumptions of Theorems 3.1, 4.1 and 4.2, and the assumption that
Ψ(ν) is invertible, the modified Wald statistic

WN(ν) = N
(
R0(ν)ˆ̂ξ(ν) − r0(ν)

)⊤ (
R0(ν)Θ̂ξ(ν)R⊤0 (ν)

)−1 (
R0(ν)ˆ̂ξ(ν) − r0(ν)

)
(41)

asymptotically follows a χ2
s0(ν) distribution under H0. Therefore, the standard formulation of the Wald test remains

valid. More precisely, at the asymptotic level α, the modified Wald test consists in rejecting H0 when WN(ν) >
χ2

s0(ν)(1 − α). It is however important to note that a consistent estimator of the form (40) is required. Note that in the

strong PVAR case and in view of Remark 3.4, Θ̂ξ(ν) = Θ̂ξS (ν) =:
[
R⊤(ν){Ω̂(ν) ⊗ Σ̂

−1
ϵ (ν)}R(ν)

]−1
and the Wald statistic

takes the more conventional form:

W∗
N(ν) =: N

(
R0(ν)ˆ̂ξ(ν) − r0(ν)

)⊤ (
R0(ν)Θ̂ξS (ν)R⊤0 (ν)

)−1 (
R0(ν)ˆ̂ξ(ν) − r0(ν)

)
(42)

The estimator Θ̂ξS (ν) of ΘξS (ν), which is routinely used in the time series software, is only valid in the strong PVAR
case.
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6. Simulations

By means of a small Monte Carlo experiment, we investigate the behaviour of the least squares estimators for strong
and weak bivariate PVAR model. The following data generating process (DGP) is used:

DGP : Yns+ν = Φ(ν)Yns+ν−1 + ϵns+ν, ν = 1, . . . , 5. (43)

We considered the case of five seasons, that is s = 5. The model DGP corresponds to a PVAR model of order 1. The
coefficients of the DGP in (43) are chosen such that Assumption (A1) holds and are given in Table 1.

Table 1: Parameters of DGP models used in the simulation

MODEL Φ(1) Φ(2) Φ(3) Φ(4) Φ(5)

DGP -1.43 0.00 0.46 0.00 1.23 0.00 0.30 0.00 0.90 0.00
0.00 0.62 0.00 0.70 0.00 -0.30 0.00 0.45 0.00 0.20

We consider that the stochastic process ϵ = {ϵ t, t ∈ Z} in (43) corresponds to a zero mean periodic white noise with
the error covariance matrix Σϵ (ν) given in Table 2.

Table 2: Error covariance matrices used in the simulation

Σϵ (1) Σϵ (2) Σϵ (3) Σϵ (4) Σϵ (5)

1.00 0.05 1.60 0.30 2.20 -0.20 2.50 -0.10 0.90 0.00
0.05 1.50 0.30 0.50 -0.20 0.80 -0.10 1.20 0.00 1.70

First we study numerically the behavior of the least squares estimators for strong and weak PVAR models of the
form (43). We consider the strong PVAR case by assuming that the innovation process ϵ in (43) is defined by an iid
sequence such that

ϵns+ν =

(
ϵ1,ns+ν

ϵ2,ns+ν

)
law
= N(0, I2). (44)

We repeat the same experiment on a weak PVAR model, meaning that the stochastic process ϵ defined by (18) and
given for m = 2 by

ϵns+ν =M⊤
ν

(
η1,ns+νη1,ns+ν−1η1,ns+ν−2
η2,ns+νη2,ns+ν−1η2,ns+ν−2

)
where MT

ν Mν = Σϵ (ν). (45)

Figures 1 and 2 compare the distribution of the least squares estimator in the strong and weak noise cases. The
distributions of Φ̂ii(ν), for i = 1, 2 and ν = 1, . . . , 5 are more accurate in the strong case than in the weak one. Similar
simulation experiments, not reported here, reveal that the situation is opposite, that is the least squares estimators
of Φ̂ii(ν) are more accurate in the weak case than in the strong case, when the weak noise is defined by ϵi,ns+ν =

ηi,ns+ν(|ηi,ns+ν−1| + 1)−1 for i = 1, 2. This is in accordance with the univariate results of Romano and Thombs (1996)
who showed that, with similar noises, the asymptotic variance of the sample autocorrelations can be greater or less
than 1 as well (1 is the asymptotic variance for strong white noises). Figure 2 compares the distribution of Φ11(1) in
the strong and weak noise cases. We consider here (one of) the parameter which variance’s seems to have problems
in the weak case, when we use the standard estimator Θ̂S (ν).
Figure 3 compares the standard estimator Θ̂S (ν) with the proposed sandwich estimators based on spectral density
estimation Θ̂SP(ν) or on kernel methods Θ̂HAC(ν) of the asymptotic varianceΘ(ν). We used the spectral estimator Ψ̂ =
Ψ̂SP defined in Theorem 4.1 where the AR order r is automatically selected by AIC, using the function VARselect()

of the vars R package. Note that similar simulation experiments, not reported here, reveal that the performance of the
proposed estimator is least sensitive to the choice of others criteria such that: BIC, HQ and FPE. The HAC estimator
based on kernel methods Ψ̂ = Ψ̂HAC defined in Theorem 4.2 is also used. HAC estimators have been the focus of
extensive research in the time series literature. Contributions to this research in the econometrics literature include,
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among others, Newey and West (1987), Andrews (1991), Müller (2014) and Lazarus et al. (2018).The bandwidth
selection for the HAC estimation is an important practical issue. For kernel densities with unit-interval support, the
bandwidth parameter, is often called the lag-truncation parameter. Based on theoretical results in Andrews (1991),
the practice is to choose a small value for the lag-truncation parameter. More recently, it has been shown that this
standard approach can often lead to tests which incorrectly reject the null hypothesis (Müller, 2014). Much of the
literature remains in the Newey-West framework but uses very long lag-truncation parameter (Kiefer and Vogesland,
2002). As indicated by Francq and Zakoı̈an (2007), ”it is well known that choice of bandwidth equal to the sample
size (i.e. bN = 1/N in our case) results in inconsistent LRV estimators”. In our case it is crucial to have a consistent
estimator of the matrix Ψ(ν).

Several leading lag-truncation choices based on traditional Newey-West HAC estimators are:

• bN = 1/ ln (N), as proposed by Francq and Zakoı̈an (2000).

• bN = 1/
(
⌊4(N/100)2/9⌋ + 1

)
or bN = 1/

(
⌊N1/4⌋ + 1

)
.

This choice is a standard textbook recommendation (Wooldridge, 2015).

• bN = 1/
(
⌊0.75N1/3⌋ + 1

)
. This rule derives from a formula of Andrews (1991), in the case of a first order

autoregressive model.

• bN = 1/
(
⌊1.3N1/2⌋ + 1

)
, as proposed by Lazarus et al. (2018). Its use of N1/2 produces higher truncation lags.

For example, if N = 1000, then bN = 1/43.

• bN = 1/N, as proposed by Kiefer and Vogesland (2002).

The performance of Newey-West estimators depends on the choice of the kernel function and lag-truncation. We fo-
cused our investigation to weight function f : R→ R which is bounded, with compact support [−a, a] and continuous
at the origin with f (0) = 1. Such weight functions are for instance: Bartlett, Truncated, Parzen and Quadratic Spectral
kernels. To determine the optimal lag-truncation parameter and the kernel, a 10-fold cross-validation is used. In the
density estimation literature, the cross-validation method has been suggested by Beltrão and Bloomfield (1987) or
by Whaba and Wold (1975). For the bandwidth, we chose 30 values between 1/50 and 1/6 and four kernels were in-
vestigated: Bartlett, Truncated, Parzen and Quadratic Spectral. The best results, for our simulated data, was obtained
using the Bartlett kernel with a bandwidth equal to 1/21.

In the strong PVAR case we know that the three estimators are consistent. In view of the three top panels of
Figure 3, it seems that the standard estimator is most accurate than the proposed sandwich estimators in the strong
case. This is not surprising because the spectral estimator or the HAC estimator are more robust, in the sense that
these estimators continue to be consistent in the weak PVAR case, contrary to the standard estimator. It is clear that in
the weak case NVar(Φ̂ii(ν)−Φii(ν))2 is better estimated by Θ̂SP

ii (ν) or by Θ̂HAC
ii (ν) (see the box-plots 1, 2, . . . , 10 of the

center-bottom and the right-bottom panel of Figure 3) than by Θ̂S (ν) (see the box-plots 1, 2, . . . , 10 of the left-bottom
panel), for i = 1, 2 and ν = 1, . . . , 5. The failure of the standard estimator of Θ in the weak PVAR setting may have
important consequences in terms of hypothesis testing for instance.
Table 3 displays the empirical sizes of the standard Wald test and that of the modified versions proposed in Section 5.
We use 3 nominal levels α = 1%, 5% and 10%. For these nominal levels, the empirical relative frequency of rejec-
tion size over the 1000 independent replications should vary respectively within the confidence intervals [0.3%, 1.7%],
[3.6%, 6.4%] and [8.1%, 11.9%] with probability 95% and [0.3%, 1.9%], [3.3%, 6.9%] and [7.6%, 12.5%] with proba-
bility 99% under the assumption that the true probabilities of rejection are respectively α = 1%, α = 5% and α = 10%.
When the relative rejection frequencies are outside the significant limits with probability 95%, they are displayed in
bold type in Table 3. For the strong PVAR model I, the relative rejection frequencies are inside the significant limits.
For the weak PVAR model II, the relative rejection frequencies of the standard Wald test are definitely outside the
significant limits. It may lead the statistician to wrongly reject the hypothesis that H0 : Φ22(ν) = 0 for ν = 1, . . . , 5
if he does not take into account the dependence of the errors ϵ. Thus the error of first kind is well controlled by all
the tests in the strong case, but only by the modified versions of the Wald tests in the weak case when N increases.
We draw the conclusion that the modified versions are preferable to the standard ones. Table 5 shows that the powers
of all the tests are very similar in the strong PVAR model III. The same is also true for the two modified Wald tests
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in the weak PVAR model IV. The empirical powers of the standard Wald tests are hardly interpretable for Model IV,
because we have already seen in Table 3 that the standard Wald test does not well controls the error of first kind in the
weak PVAR framework.
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Figure 1: The least squares estimator of 1000 independent simulations of model (43) with unknown parameter given in Table 1, when the noise
is strong (left panels) and when the noise is weak (right panels). The panels display the distribution of the estimation errors Φ̂ii(ν) − Φii(ν), for
i = 1, 2 and ν = 1, . . . , 5.
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Figure 2: The least squares estimator of 1000 independent simulations of the model (43) with size N = 1000 and unknown parameter given in
Table 1, when the noise is strong (left panels) and when the noise is weak (right panels). The panels of the top present the Q–Q plot of the estimates
Φ11(1). The bottom panels display the distribution of the same estimates. The kernel density estimate is displayed in full line, and the centered
Gaussian density with the same variance is plotted in dotted line.
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Table 3: Empirical size of standard and modified tests: relative frequencies (in %) of rejection of H0 : Φ22(ν) = 0 for ν = 1, . . . , 5.
Modified Wald Test (41), which use the spectral estimator or the HAC estimator denoted: WSP

N (ν) or WHAC
N (ν). The number of

replications is 1000.

Model Length N Level W∗N (ν) WSP
N (ν) WHAC

N (ν)
ν ν ν

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

α = 1% 0.8 0.1 0.9 0.8 1.3 0.8 0.7 0.9 1.2 1.0 0.8 0.7 1.0 1.2 1.1

I N = 1, 000 α = 5% 4.5 3.4 4.2 4.7 6.2 5.2 5.1 5.3 6.0 6.5 5.0 5.3 5.4 6.1 6.4

α = 10% 9.6 8.3 10.2 11.5 10.1 10.1 11.1 12.2 12.1 10.3 9.8 11.0 11.9 11.8 10.5

α = 1% 0.8 0.4 1.0 1.1 0.7 0.9 1.1 1.3 1.0 0.9 1.0 1.2 1.3 1.0 0.8

I N = 4, 000 α = 5% 4.8 4.8 4.0 5.6 4.6 4.8 5.6 5.7 6.0 4.6 5.0 5.8 5.7 6.1 4.5

α = 10% 9.6 9.2 9.8 10.5 9.8 9.8 11.2 11.6 11.1 9.7 10.0 11.7 11.4 11.0 10.1

α = 1% 35.2 31.9 33.0 36.4 34.3 2.1 1.4 2.0 2.0 1.2 2.1 1.3 1.4 1.5 1.1

II N = 1, 000 α = 5% 46.6 44.5 45.5 51.3 45.6 6.3 6.2 7.9 6.5 6.9 6.6 6.1 6.6 6.1 6.5
α = 10% 54.6 51.9 52.9 57.9 53.2 12.5 11.2 13.2 12.7 12.2 11.5 10.8 13.0 12.2 11.4

α = 1% 38.6 32.2 33.3 39.7 36.8 1.1 1.4 1.4 1.4 0.5 1.0 1.3 1.4 1.2 0.5

II N = 4, 000 α = 5% 51.9 46.7 46.3 52.0 48.6 5.9 5.6 5.2 5.8 4.4 6.0 5.5 4.8 6.0 4.2

α = 10% 57.5 54.1 53.1 57.5 55.1 11.1 11.1 10.5 11.9 9.6 10.4 10.4 10.8 11.8 9.0

I: Strong PVAR(1) model (43)-(44) with unknown parameter given in Table 4.
II: Weak PVAR(1) model (43)-(45) with unknown parameter given in Table 4.

Table 4: Parameters of DGP models used in the simulation to test H0 : Φ22(ν) = 0 for ν = 1, . . . , 5.

MODEL Φ(1) Φ(2) Φ(3) Φ(4) Φ(5)

DGP -1.43 0.00 0.46 0.00 1.23 0.00 0.30 0.00 0.90 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Empirical power of standard and modified tests: relative frequencies (in %) of rejection of H0 : Φ22(ν) = 0 for ν = 1, . . . , 5.
Modified Wald Test (41), which use the spectral estimator or the HAC estimator denoted: WSP

N (ν) or WHAC
N (ν). The number of

replications is 1000.

Model Length N Level W∗N (ν) WSP
N (ν) WHAC

N (ν)
ν ν ν

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

α = 1% 79.0 100.0 44.8 51.4 54.7 78.8 100.0 49.2 52.0 55.2 78.8 100.0 48.7 52.1 54.7

III N = 4, 000 α = 5% 93.3 100.0 67.9 75.1 76.4 93.1 100.0 70.1 75.1 76.9 93.0 100.0 70.3 75.2 76.6

α = 10% 97.1 100.0 77.2 82.7 84.8 97.4 100.0 78.7 83.0 85.0 97.3 100.0 78.5 83.2 84.9

α = 1% 59.3 85.4 52.3 54.5 54.0 7.8 30.7 6.5 5.2 5.2 7.4 30.3 5.8 5.4 5.1

IV N = 4, 000 α = 5% 68.4 90.8 63.6 66.3 64.1 23.4 53.4 17.7 16.9 15.4 22.4 53.1 17.7 16.2 15.0

α = 10% 74.4 92.9 69.3 71.7 71.7 32.8 65.6 27.1 25.7 24.3 32.0 66.0 27.4 25.2 24.2

III: Strong PVAR(1) model (43)-(44) with unknown parameter given in Table 6.
IV: Weak PVAR(1) model (43)-(45) with unknown parameter given in Table 6.
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Table 6: Parameters of DGP models used in the simulation of empirical power to test H0 : Φ22(ν) = 0 for ν = 1, . . . , 5.

MODEL Φ(1) Φ(2) Φ(3) Φ(4) Φ(5)

DGP -1.43 0.00 0.46 0.00 1.23 0.00 0.30 0.00 0.90 0.00
0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05

7. Application to real data

In this section, we consider the daily returns of two European stock market indices: CAC 40 (Paris) and DAX (Frank-
furt), from March 3, 1990 to March 10, 2022. The data were obtained from Yahoo Finance. Because of the legal
holidays, many weeks comprise less than five observations. We preferred removing the entire weeks when there was
less than five data available, giving a bivariate time series of sample size equal to 7060. The period ν = 5 is naturally
selected.
In order to analyse these two European indices, we fitted a PVAR model of order 1 to the bivariate series of observa-
tions:

Yns+ν = Φ(ν)Yns+ν−1 + ϵns+ν ν = 1, . . . , 5,

where Yt =
(
r1

t , r
2
t

)⊤
and r1

t , r2
t represents the log-return of CAC 40 and DAX respectively. The log-return is defined

as rt = 100× ln (It/It−1) where It represents the value of the index at time t. Seasonal means are first removed from the
series, meaning that a model is formulated by examining Yns+ν−µ(ν). The two time series of log-returns are displayed
in Figure 4.
We present in Table 7 the estimated parameters β̂ = (β̂(1), . . . , β̂(5))⊤ and their estimated standard error proposed in
the strong case (see Remark 3.3) denoted σ̂S and the weakly consistent estimators proposed (37) and (38), denoted
respectively by σ̂SP and σ̂HAC; Σ̂(ν) represents the estimated variance of residuals ϵ̂(ν). The p-values of the t-statistic
of β̂ and those of the standard and modified versions of the Wald tests are denoted: pvalS , pvalSP, pvalHAC, pvalWS ,
pvalWSP and pvalWHAC, where the exponent W stands for Wald. The p-values less than 5% are in bold, those less than 1%
are underlined. The autoregressive coefficients Φ̂i j(ν) for i, j = 1, 2 are rather small on Monday, Tuesday and Friday.
Four of them are significant at the 1% level in the strong case on Wednesday and Thursday. In the weak case, none of
them are significant at the 1% level. This is in accordance with the results of Francq et al. (2011) who showed that the
log-returns of these two European stock market indices constitute the weak periodic white noises. As in Francq et al.
(2011), the estimated variance of residuals shows that, the volatility is considerably greater on Monday and smaller
for the other days.
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Figure 4: Log-returns of CAC 40 (Paris) and DAX (Frankfurt)
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Table 7: Least squares estimators used to fit the log-returns of CAC 40 and DAX data to a bivariate PVAR model with ν = 5; the σ̂S, σ̂SP and
σ̂HAC represent the standard errors in the strong case and for our proposed estimators in the weak case; pvalS , pvalSP, pvalHAC, pvalWS , pvalWSP and
pvalWHAC correspond to the p-values of the t-statistic of β̂ and those of the standard and modified versions of the Wald tests are also presented; Σ̂ϵ (ν)
represents the estimated variance of residuals ϵ̂(ν). The p-values less than 5% are in bold, those less than 1% are underlined.

β̂ σ̂S σ̂SP σ̂HAC pvalS pvalSP pvalHAC pvalW
S pvalW

SP pvalW
HAC vec

(
Σ̂ϵ (ν)

)
1 -0.0349 0.0707 0.1456 0.1078 0.6220 0.8107 0.7464 0.6219 0.8107 0.7464 3.5457
2 0.0153 0.0731 0.1480 0.1152 0.8346 0.9180 0.8947 0.8346 0.9179 0.8947 3.2404
3 -0.0070 0.0706 0.0992 0.0862 0.9215 0.9441 0.9357 0.9215 0.9441 0.9357 3.2404
4 -0.0378 0.0729 0.1019 0.1004 0.6044 0.7106 0.7066 0.6043 0.7106 0.7065 3.7859
5 -0.0506 0.0399 0.0524 0.0486 0.2045 0.3339 0.2975 0.2043 0.3337 0.2973 1.7366
6 -0.0270 0.0420 0.0663 0.0622 0.5214 0.6843 0.6651 0.5213 0.6842 0.6650 1.5938
7 -0.0020 0.0386 0.0551 0.0474 0.9591 0.9713 0.9667 0.9591 0.9713 0.9667 1.5938
8 -0.0246 0.0407 0.0742 0.0624 0.5450 0.7399 0.6932 0.5449 0.7398 0.6931 1.9297
9 -0.3001 0.0532 0.1296 0.1200 0.0000 0.0207 0.0125 0.0000 0.0206 0.0124 1.6817

10 -0.1256 0.0545 0.0781 0.0693 0.0214 0.1078 0.0704 0.0213 0.1076 0.0702 1.4736
11 0.2605 0.0505 0.1381 0.1265 0.0000 0.0595 0.0396 0.0000 0.0592 0.0394 1.4736
12 0.0360 0.0517 0.0607 0.0642 0.4869 0.5535 0.5752 0.4868 0.5534 0.5751 1.7671
13 -0.1498 0.0548 0.1020 0.0844 0.0063 0.1422 0.0761 0.0062 0.1420 0.0758 2.0261
14 -0.0744 0.0551 0.0639 0.0715 0.1767 0.2445 0.2979 0.1765 0.2443 0.2977 1.7907
15 0.1862 0.0538 0.1021 0.0855 0.0006 0.0683 0.0295 0.0005 0.0681 0.0294 1.7907
16 0.0955 0.0541 0.0620 0.0715 0.0778 0.1240 0.1824 0.0776 0.1237 0.1822 2.0471
17 -0.0227 0.0521 0.0681 0.0647 0.6627 0.7385 0.7252 0.6626 0.7384 0.7251 1.7824
18 -0.0055 0.0522 0.0670 0.0654 0.9156 0.9343 0.9326 0.9156 0.9343 0.9326 1.5118
19 0.0694 0.0520 0.0739 0.0699 0.1823 0.3480 0.3209 0.1821 0.3479 0.3207 1.5118
20 0.0420 0.0521 0.0734 0.0705 0.4202 0.5677 0.5517 0.4201 0.5676 0.5516 1.7861

8. Conclusions

In this work, we have established under mild assumptions, the asymptotic distribution of the least squares estimator
of the model parameters in PVAR time series models with dependent but uncorrelated errors. Our results extend
Theorem 1 of Ursu and Duchesne (2009) for PVAR models with independent errors. Note that if s = 1, we retrieve
the result on weak VAR obtained by Francq and Raı̈ssi (2007). The asymptotic covariance matrix of the least squares
estimators obtained under independent errors is generally not consistent in the weak PVAR case. For statistical
inference problem, including in particular, the significance tests on the parameters, the assumption of independent
errors can be quite misleading when analysing data from PVAR models with dependent errors.

We proposed two estimators of the asymptotic variance matrix: the spectral density estimator and the heteroskedas-
ticity and autocorrelation consistent estimator based on kernel methods. The empirical results of Sections 6 and 7
illustrate the applicability of our theoretical results using a consistent estimator of the asymptotic variance matrix of
the least square estimators of weak PVAR parameters. In future works, we intend to study how the existing identifi-
cation and diagnostic checking (see e.g. Ursu and Duchesne (2009)) procedures should be adapted in the weak PVAR
framework considered in the present paper. The asymptotic covariance matrix of the least squares estimators of a
weak PVAR model is no longer block diagonal with respect to seasons and depends on the fourth-order moments of
the innovation process (through the matrix Ψ(ν)).

A. Appendix : Proofs of the main results

The proof of Theorem 3.1 is quite technical. This is adaptation of the arguments used in Francq et al. (2011).

A.1. Proof of Theorem 3.1

The proof is quite long so we divide it in several steps.
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⋄ Step 1: preliminaries.

In view of (3), it is easy to see that X⊤n (ν) is a measurable function of the random vectors {ϵns+ν−k, k ≥ 1}. Thus
the assumption (A2) of the error term (ϵ∗n)n∈Z allows us to show that (vec{ϵns+νX⊤n (ν)})n∈Z is a stationary and ergodic
sequence. Applying the ergodic theorem, we obtain that

N−1
N−1∑
n=0

vec{ϵns+νX⊤n (ν)}
a.s.
→ E

[
vec{ϵns+νX⊤n (ν)}

]
= 0, (46)

by using the non-correlation between ϵns+ν’s (see (A0)) and where 0 is the {d2 p(ν)} × 1 null vector.

⋄ Step 2: convergence in distribution of N−1/2 ∑N−1
n=0 vec{ϵns+νX⊤n (ν)}.

Using the stationarity of (vec{ϵns+νX⊤n (ν)})n∈Z, we have

var

 1
√

N

N−1∑
n=0

vec{ϵns+νX⊤n (ν)}


=

1
N

N−1∑
n=0

N−1∑
n′=0

cov
{
vec{ϵns+νX⊤n (ν)}, vec{ϵn′ s+νX⊤n′ (ν)}

}
=

1
N

N−1∑
h=−N+1

(N − |h|) c(ν, h),

where
c(ν, h) = cov

(
vec{ϵns+νX⊤n (ν)}, vec{ϵ(n−h)s+νX⊤n−h(ν)}

)
.

By the dominated convergence theorem, it follows that

Ψ(ν) =
∞∑

h=−∞

cov
(
vec{ϵns+νX⊤n (ν)}, vec{ϵ(n−h)s+νX⊤n−h(ν)}

)
.

The existence of the last sum is a consequence of (A3) and the Davydov (1968) inequality. Using (46) and the
elementary relations vec(ab⊤) = b ⊗ a for any vectors a and b, and (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) for matrices of
appropriate sizes (see Lütkepohl (2005)), it follows that

Ψ(ν) =
∞∑

h=−∞

E
(
Xn(ν)X⊤n−h(ν) ⊗ ϵns+νϵ

⊤
(n−h)s+ν

)
.

Let ϵn(ν) = (ϵ⊤ns+ν−1, . . . , ϵ
⊤
ns+ν−p(ν))

⊤, n = 0, 1, . . . ,N − 1, be a {dp(ν)} × 1 random vectors. In the sequel, we need
the elementary identity vec(ABC) = (I ⊗ AB)vec(C) (see Lütkepohl (2005)). In view of (3), we have for all r ≥ 0

vec{ϵns+νX⊤n (ν)} =
∞∑

i=0

(
Idp(ν) ⊗ ϵns+νϵ

⊤
n−i(ν)

)
vec

(
Ip(ν) ⊗ C⊤i (ν)

)
=Wn,r(ν) + Un,r(ν), (47)

where

Wn,r(ν) =
r∑

i=0

(
Idp(ν) ⊗ ϵns+νϵ

⊤
n−i(ν)

)
vec

(
Ip(ν) ⊗ C⊤i (ν)

)
Un,r(ν) =

∞∑
i=r+1

(
Idp(ν) ⊗ ϵns+νϵ

⊤
n−i(ν)

)
vec

(
Ip(ν) ⊗ C⊤i (ν)

)
.
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The processes (Wn,r(ν))n∈Z and (Un,r(ν))n∈Z are stationary and centered. Moreover, under Assumption (A3) and r
fixed, the process (Wn,r(ν))n∈Z is strongly mixing (see Theorem 14.1 in Davidson (1994)), with mixing coefficients
αWr (h) ≤ αϵ (max{0, h − 1}). Thus (A3) implies

∑∞
h=0{αWr (h)}κ/(2+κ) < ∞ and using the Höder inequality, we obtain

that ∥Wn,r(ν)∥2+κ < ∞ for some κ > 0. The central limit theorem for strongly mixing processes (see Herrndorf (1984))
implies that N−1/2 ∑N−1

n=0 Wn,r(ν) has a limiting N(0,Ψr(ν)) distribution with

Ψr(ν) = lim
N→∞

var

 1
√

N

N−1∑
n=0

Wn,r(ν)

 = ∞∑
h=−∞

cov
(
Wn,r(ν),Wn−h,r(ν)

)
.

Since N−1/2 ∑N−1
n=0 Wn,r(ν) and N−1/2 ∑N−1

n=0 vec{ϵns+νX⊤n (ν)} have zero expectation, we shall have

lim
r→∞

var

 1
√

N

N−1∑
n=0

Wn,r(ν)

 = var

 1
√

N

N−1∑
n=0

vec{ϵns+νX⊤n (ν)}

 ,
as soon as

lim
r→∞

lim sup
N→∞

P

∥∥∥∥∥∥∥ 1
√

N

N−1∑
n=0

Un,r(ν)

∥∥∥∥∥∥∥ > ε
 = 0 (48)

for every ε > 0. As a consequence we will have limr→∞Ψr(ν) = Ψ(ν). The result (48) follows from a straightforward
adaptation of Theorem 7.7.1 and Corollary 7.7.1 of Anderson (see Anderson (1971) pages 425-426). Indeed, by
stationarity we have

var

 1
√

N

N−1∑
n=0

Un,r(ν)

 =
1
N

N−1∑
n,n′=0

cov
(
Un,r(ν),Un′,r(ν)

)
=

1
N

∑
|h|<N−1

(N − |h|)cov
(
Un,r(ν),Un−h,r(ν)

)
≤

∞∑
h=−∞

∥∥∥cov
(
Un,r(ν),Un−h,r(ν)

)∥∥∥ .
Because ∥Ci∥ ≤ Kρi for ρ ∈ [0, 1[ and K > 0 and in view of (47), we have∥∥∥Un,r(ν)

∥∥∥ ≤ K
∞∑

i=r+1

ρi∥ϵns+ν∥∥ϵn−i(ν)∥.

Under (A3) we have E∥ϵns+ν∥
4+2κ < ∞, it follows from the Hölder inequality that

sup
h

∥∥∥cov
(
Un,r(ν),Un−h,r(ν)

)∥∥∥ = sup
h

∥∥∥∥E (
Un,r(ν)U⊤n−h,r(ν)

)∥∥∥∥ ≤ Kρr. (49)

Let h > 0 such that [h/2] > r. Write
Un,r(ν) = Uh−

n,r(ν) + Uh+
n,r(ν),

where

Uh−
n,r(ν) =

[h/2]∑
i=r+1

(
Idp(ν) ⊗ ϵns+νϵ

⊤
n−i(ν)

)
vec

(
Ip(ν) ⊗ C⊤i (ν)

)
,

Uh+
n,r(ν) =

∞∑
i=[h/2]+1

(
Idp(ν) ⊗ ϵns+νϵ

⊤
n−i(ν)

)
vec

(
Ip(ν) ⊗ C⊤i (ν)

)
.

Note that Uh−
n,r(ν) belongs to the σ-field generated by {ϵns+ν, ϵns+ν−1, . . . , ϵns+ν−[h/2]} and that Un−h,r(ν) belongs to the

σ-field generated by {ϵ(n−h)s+ν, ϵ(n−h−1)s+ν−1, , . . . }. By (A3), E∥Uh−
n,r(ν)∥

2+κ < ∞ and E∥Un−h,r(ν)∥2+κ < ∞. Davydov’s
inequality (see Davydov (1968)) then entails that∥∥∥∥cov

(
Uh−

n,r(ν),Un−h,r(ν)
)∥∥∥∥ ≤ Kακ/(2+κ)ϵ ([h/2]). (50)
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By the argument used to show (49), we also have∥∥∥∥cov
(
Uh+

n,r(ν),Un−h,r(ν)
)∥∥∥∥ ≤ Kρhρr. (51)

In view of (49), (50) and (51), we have
∞∑

h=0

∥∥∥cov
(
Un,r(ν),Un−h,r(ν)

)∥∥∥ ≤ Kρr + K
∞∑

h=r

ακ/(2+κ)ϵ (h)→ 0

as r → ∞ by (A3). We have the same bound for h < 0. This implies that

sup
N

var

 1
√

N

N−1∑
n=0

Un,r(ν)

 −−−−→r→∞
0. (52)

The conclusion of (48) follows from the Markov inequality.
From a standard result (see e.g. Proposition 6.3.9 in Brockwell and Davis (1991)), we deduce that

1
√

N

N−1∑
n=0

vec{ϵns+νX⊤n (ν)} =
1
√

N

N−1∑
n=0

Wn,r(ν) +
1
√

N

N−1∑
n=0

Un,r(ν)
d
→ N (0,Ψ(ν)) ,

which completes the proof of (14).

⋄ Step 3: existence and invertibility of the matrix Ω(ν).

By ergodicity of the centred process (Xn(ν))n∈Z ∈ Rdp(ν), we deduce that

1
N

Xn(ν)X⊤n (ν)
a.s.
→ Ω(ν) := E

(
Xn(ν)X⊤n (ν)

)
. (53)

From (47) we obtain that

E
(
Xn(ν)X⊤n (ν)

)
= E


 ∞∑

i=0

(
Ip(ν) ⊗ Ci(ν)

)
ϵn−i(ν)


 ∞∑

j=0

(
Ip(ν) ⊗ C j(ν)

)
ϵn− j(ν)

⊤


=

∞∑
i=0

∞∑
j=0

(
Ip(ν) ⊗ Ci(ν)

)
E

[
ϵn−i(ν)ϵ⊤n− j(ν)

] (
Ip(ν) ⊗ C⊤j (ν)

)
=

∞∑
i=0

(
Ip(ν) ⊗ Ci(ν)

) (
Ip(ν) ⊗ Σϵ (ν)

) (
Ip(ν) ⊗ C⊤i (ν)

)
≤ K

∑
i≥0

ρi < ∞.

Therefore the matrix Ω(ν) exists almost surely.
If the matrix Ω(ν) is not invertible, there exists some real constants c1, . . . , cdp(ν) not all equal to zero such that

c⊤Ω(ν)c = 0, where c = (c1, . . . , cdp(ν))⊤. For i = 1, . . . , dp(ν), let Xi,n(ν) be the i-th component of Xn(ν) and denotes
by Ω ji(ν) the (i, j)-th component of Ω(ν). We obtain that

dp(ν)∑
i=1

dp(ν)∑
j=1

c jΩ ji(ν)ci =

dp(ν)∑
i=1

dp(ν)∑
j=1

E
[(

c jX j,n(ν)
) (

ciXi,n(ν)
)]
= E


dp(ν)∑

k=1

ckXk,n(ν)


2 = 0,

which implies that

dp(ν)∑
k=1

ckXk,n(ν) = 0 a.s. or equivalenty c⊤Xn(ν) =
∞∑

i=0

c⊤
(
Ip(ν) ⊗ Ci(ν)

)
ϵn−i(ν) = 0 a.s.

This is in contradiction with the assumption that Σϵ (ν) is not equal to zero. Therefore c⊤Xn(ν) is not almost surely
equal to zero and Ω(ν) is almost surely invertible.
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⋄ Step 4: convergence in probability of β̂(ν).

Using the relation (13), we can write:

B̂(ν) − B(ν) = N−1E(ν)X⊤(ν){N−1X(ν)X⊤(ν)}−1.

Noting that
∑N−1

n=0 vec{ϵns+νX⊤n (ν)} = vec{E(ν)X⊤(ν)}, from (14), it follows that N−1/2vec{E(ν)X⊤(ν)}
d
→ Nd2 p(ν)(0,Ψ(ν)).

Applying the ergodic theorem and from (46), we have N−1vec{E(ν)X⊤(ν)}
a.s.
→ 0, where the dimension of 0 is

{d2 p(ν)} × 1, and also {N−1X(ν)X⊤(ν)}−1 a.s.
→ Ω−1(ν); these results show (15).

⋄ Step 5: convergence in distribution of N1/2{β̂(ν) − β(ν)}.

Since

N1/2{β̂(ν) − β(ν)} =
[
{N−1X(ν)X⊤(ν)}−1 ⊗ Id

]
N−1/2{X(ν) ⊗ Id}e(ν),

=
[
{N−1X(ν)X⊤(ν)}−1 ⊗ Id

]
N−1/2vec{E(ν)X⊤(ν)} (54)

Slutsky’s theorem and relation (14) give (16), using the following argument:

Θ(ν) =
(
Ω−1(ν) ⊗ Id

) ∞∑
h=−∞

E
(
Xn(ν)X⊤n−h(ν) ⊗ ϵns+νϵ

⊤
(n−h)s+ν

) (
Ω−1(ν) ⊗ Id

)
=

∞∑
h=−∞

E
[
Ω−1(ν)Xn(ν)X⊤n−h(ν)Ω−1(ν) ⊗ ϵns+νϵ

⊤
(n−h)s+ν

]
.

The joint asymptotic normality of N1/2{β̂
⊤

(1)−β⊤(1), . . . , β̂
⊤

(s)−β⊤(s)} follows using the same kind of manipulations
as those for a single season ν. We also hawe

N1/2{β̂ − β}
d
→ Nsd2 p(ν) (0,Θ) ,

where the asymptotic covariance matrixΘ is a block matrix, with the asymptotic variances given byΘ(ν), ν = 1, . . . , s,
and the asymptotic covariances given by:

lim
N→∞

cov
(
N1/2{β̂(ν) − β(ν)},N1/2{β̂(ν′) − β(ν′)}

)
=

(
Ω−1(ν) ⊗ Id

) ∞∑
h=−∞

E
(
Xn(ν)X⊤n−h(ν′) ⊗ ϵns+νϵ

⊤
(n−h)s+ν′

) (
Ω−1(ν′) ⊗ Id

)
,

for ν , ν′ and ν, ν′ = 1, . . . , s.

A.2. Proof of Theorem 4.2
Observe that

Ψ̂HAC(ν) −Ψ(ν) =
TN∑

h=−TN

f (hbN)
(
Λ̂h(ν) − Λh(ν)

)
+

TN∑
h=TN

{ f (hbN) − 1}Λh(ν) −
∑
|h|>TN

Λh(ν).

By the triangular inequality, for any multiplicative norm, we have∥∥∥Ψ̂HAC(ν) −Ψ(ν)
∥∥∥ ≤ g1 + g2 + g3,

where

g1 = sup
|h|<N

∥∥∥Λ̂h(ν) − Λh(ν)
∥∥∥ ∑
|h|≤TN

| f (hbN)| ,

g2 =
∑
|h|≤TN

| f (hbN) − 1| ∥Λh(ν)∥ and g3 =
∑
|h|>TN

∥Λh(ν)∥ .

In view of this last inequality, to prove the convergence in probability of Ψ̂HAC(ν) to Ψ(ν), it suffices to show that the
probability limit of g1, g2 and g3 is 0.
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⋄ Step 1: convergence in probability of sup|h|<N

∥∥∥Λ̂h(ν) − Λh(ν)
∥∥∥ to 0.

Let Λ∗h(ν) be the matrix defined, for 0 ≤ h < N, by

Λ∗h(ν) =
1
N

N−h−1∑
n=0

Wn(ν)W⊤
n−h(ν) and Λ∗−h(ν) = Λ∗⊤h (ν).

Observe that
sup
|h|<N

∥∥∥Λ̂h(ν) − Λh(ν)
∥∥∥ ≤ sup

|h|<N

∥∥∥Λ̂h(ν) − Λ∗h(ν)
∥∥∥ + sup

|h|<N

∥∥∥Λ∗h(ν) − Λh(ν)
∥∥∥ .

By the ergodic theorem, we have

Λ∗h(ν)
a.s.
→ Λh(ν). (55)

A Taylor expansion of vec{Λ̂h(ν)} around β and (14) give

vec{Λ̂h(ν)} = vec{Λ∗h(ν)} +
∂vec{Λ∗h(ν)}

∂β⊤(ν)
(β̂(ν) − β(ν)) + OP

(
1
N

)
.

In view of (55) and by (A3), we then deduce that

lim
N→∞

sup
|h|<N

∥∥∥∥∥∥∂vec{Λ∗h(ν)}

∂β⊤(ν)

∥∥∥∥∥∥ < ∞, a.s. (56)

By the ergodic theorem, (14) and (56), for any multiplicative norm, we have

sup
|h|<N

∥∥∥∥vec
(
Λ̂h(ν) − Λ∗h(ν)

)∥∥∥∥ ≤ lim
N→∞

sup
|h|<N

∥∥∥∥∥∥∂vec{Λ∗h(ν)}

∂β⊤(ν)

∥∥∥∥∥∥ ∥∥∥β̂(ν) − β(ν)
∥∥∥ + OP

(
1
N

)
= OP

(
1
√

N

)
. (57)

From (55) and (57), we deduce that

sup
|h|<N

∥∥∥Λ̂h(ν) − Λh(ν)
∥∥∥ = OP

(
1
√

N

)
= oP(1), (58)

the conclusion is complete.

⋄ Step 2: convergence in probability of g1, g2 and g3 to 0.
By (A3), E∥Wn∥

2+κ < ∞. Davydov’s inequality (see Davydov (1968)) then entails that

∥Λh(ν)∥ = ∥cov (Wn(ν),Wn−h(ν))∥ ≤ Kακ/(2+κ)ϵ ([h/2]). (59)

In view of (A3), we thus have g3 → 0 as N → ∞. Let m be a fixed integer and we write g2 ≤ s1 + s2, where

s1 =
∑
|h|≤m

| f (hbN) − 1| ∥Λh(ν)∥ and s2 =
∑

m<|h|≤TN

| f (hbN) − 1| ∥Λh(ν)∥ .

For |h| ≤ m, we have hbN → 0 as N → ∞ and f (hbN) → 1, it follows that s1 → 0. If we choose m sufficiently large,
s2 becomes small. Using (59) and the fact that f (·) is bounded, it follows that g2 → 0.

In view of (35) and (58), we have

g1 = sup
|h|<N

∥∥∥Λ̂h(ν) − Λh(ν)
∥∥∥ ∑
|h|≤TN

| f (hbN)| ,

=
1

bN
sup
|h|<N

∥∥∥Λ̂h(ν) − Λh(ν)
∥∥∥ bN

∑
|h|≤TN

| f (hbN)| ,

≤
1

bN
sup
|h|<N

∥∥∥Λ̂h(ν) − Λh(ν)
∥∥∥ O(1) = OP

(
1

bN
√

N

)
= oP(1),

since Nb2
N → ∞, in view of (34). The proof is complete.
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