MACDONALD IDENTITIES, WEYL-KAC DENOMINATOR FORMULAS AND AFFINE GRASSMANNIANS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

MACDONALD IDENTITIES, WEYL-KAC DENOMINATOR FORMULAS AND AFFINE GRASSMANNIANS

Identités de Macdonald, formule de dénominateur de Weyl-Kac et grassmannienes affines

Résumé

We expand the affine Weyl denominator formulas as signed $q$-series of ordinary Weyl characters running over the affine Grassmannian. Here the grading in $q$ coincides with the (dual) atomic length of the root system considered as introduced by Chapelier-Laget and Gerber. Next, we give simple expressions of the atomic lengths in terms of self-conjugate core partitions.\ This permits in particular to rederive, from the general theory of affine root systems, some results of the second author obtained by case-by-case computations on determinants and the use of particular families of strict partitions. These families are proved to be in simple one-to-one correspondences with the previous core partition model and, through this correspondence, the atomic length on cores equates the rank of the strict partitions considered. Finally, we make explicit some interactions between the affine Grassmannian elements and the Nekrasov-Okounkov type formulas.
Fichier principal
Vignette du fichier
MacDonaldIdentitiesCoresarxiv.pdf (663.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04549070 , version 1 (17-04-2024)

Identifiants

  • HAL Id : hal-04549070 , version 1

Citer

David Wahiche, Cedric Lecouvey. MACDONALD IDENTITIES, WEYL-KAC DENOMINATOR FORMULAS AND AFFINE GRASSMANNIANS. 2024. ⟨hal-04549070⟩
61 Consultations
46 Téléchargements

Partager

More