A practical global existence and uniqueness result for stochastic differential equations on Riemannian manifolds of bounded geometry - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

A practical global existence and uniqueness result for stochastic differential equations on Riemannian manifolds of bounded geometry

Résumé

In this paper, we establish a result for existence and uniqueness of stochastic differential equa- tions on Riemannian manifolds, for regular inhomogeneous tensor coefficients with stochastic drift, under geometrical-only hypothesis on the manifold, so-called manifolds of bounded geometry, this hypothesis is consistent with the maximal regularity result for parabolic equations obtained by Herbert Amann. Furthermore, we provide a stochastic flow estimate for the solutions.
Fichier principal
Vignette du fichier
Practical_Existence_Result_Sto_Diff_Eq__Riemannian_Manifold.pdf (372.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04548350 , version 1 (16-04-2024)
hal-04548350 , version 2 (18-04-2024)

Identifiants

  • HAL Id : hal-04548350 , version 2

Citer

Matthias Rakotomalala. A practical global existence and uniqueness result for stochastic differential equations on Riemannian manifolds of bounded geometry. 2024. ⟨hal-04548350v2⟩
90 Consultations
24 Téléchargements

Partager

More