On the Wasserstein distance between a hyperuniform point process and its mean - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

On the Wasserstein distance between a hyperuniform point process and its mean

Résumé

We study the average $p-$Wasserstein distance between a finite sample of an infinite hyperuniform point process on $\mathbb{R}^2$ and its mean for any $p\geq 1$. The average Wasserstein transport cost is shown to be bounded from above and from below by some multiples of the number of points. More generally, we give a control on the $p-$Wasserstein distance in function of a control on the $L^p$ norm of the difference of the point process and its mean.
Fichier principal
Vignette du fichier
main.pdf (372.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04544006 , version 1 (12-04-2024)
hal-04544006 , version 2 (19-07-2024)

Identifiants

  • HAL Id : hal-04544006 , version 1

Citer

Raphael Butez, Sandrine Dallaporta, David García-Zelada. On the Wasserstein distance between a hyperuniform point process and its mean. 2024. ⟨hal-04544006v1⟩
76 Consultations
56 Téléchargements

Partager

More