Pré-Publication, Document De Travail Année : 2024

A computationally efficient reformulation for Data-Enabled Predictive Control

Résumé

This work investigates the computational efficiency of Data-EnablEd Predictive Control (DeePC) reformulations. Based on Willems' fundamental lemma, this control method uses Hankel matrices to represent system dynamics. The size---in particular the number of columns---of these Hankel matrices can incur a significant computational complexity, which has seen several attempts at being reduced. We propose a reformulation of DeePC aiming for lower complexity and show how it allows for exponential forgetting of online collected data. The method's effectiveness is illustrated by results obtained both in simulation and experimentally.
Fichier principal
Vignette du fichier
CDC_2024_V1.pdf (720.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04542440 , version 1 (11-04-2024)

Identifiants

  • HAL Id : hal-04542440 , version 1

Citer

Alexandre Faye-Bedrin, Stanislav Aranovskiy, Paul Chauchat, Romain Bourdais. A computationally efficient reformulation for Data-Enabled Predictive Control. 2024. ⟨hal-04542440⟩
143 Consultations
181 Téléchargements

Partager

More