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A computationally efficient reformulation for Data-Enabled Predictive
Control

Alexandre Faye-Bédrin1, Stanislav Aranovskiy1, Paul Chauchat2, and Romain Bourdais1

Abstract— This work investigates the computational effi-
ciency of Data-EnablEd Predictive Control (DeePC) reformu-
lations. Based on Willems’ fundamental lemma, this control
method uses Hankel matrices to represent system dynamics.
The size—in particular the number of columns—of these Han-
kel matrices can incur a significant computational complexity,
which has seen several attempts at being reduced. We propose a
reformulation of DeePC aiming for lower complexity and show
how it allows for exponential forgetting of online collected data.
The method’s effectiveness is illustrated by results obtained
both in simulation and experimentally.

I. INTRODUCTION

Willems fundamental lemma [1] is a powerful result for
linear time-invariant (LTI) systems analysis and control. It
states that every trajectory of a LTI system can be derived
from a Hankel matrix, built from a longer trajectory under a
few conditions, such as the persistence of excitation of the
input. This implicit system representation can have many
uses [2], in particular, simulation [3] and control [4]. In
recent years, this approach sparked a lot of interest and
led to the development of analysis and control methods
[5], [6]. Notably, data-enabled predictive control (DeePC)
methods have been developed [7], [8]. Different flavors
include offset-free tracking [9], [10], online data update [11],
multiple shooting [12], and distributional robustness [13],
[14]. Some of these schemes use a bi-level formulation of the
Optimal Control Problem (OPC) to decouple ”model” fitness
and desired performance [15], [16]. The general method
has been successfully applied to different systems, such as
quadrocopters [17], power converters [18], [19], or building
temperature regulation [16].

In (predictive) control applications, computational com-
plexity is a fundamental question: it is necessary to solve
an OCP fast enough, e.g., at each sample time, in order
to be able to apply it. Within the DeePC framework, OCP
can have very high complexity, as they compute the best
linear combination of numerous trajectories. In other words,
the quantity of data has a direct (negative) influence on
the computational cost. Because of this, several attempts
have been made to reduce this cost: among them, using a
singular value decomposition (SVD) of the mosaic-Hankel
matrix to reduce the dimension of the optimal variable seems
the most recurring [20], [10]. Some authors use (inverse)
Fourier transforms to perform fast Hankel matrix-vector
multiplication [11], [21], although it seems restricted to
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specific optimization methods. In [22], the authors propose
an optimization method tailored to a specific OCP. SPC
(Subspace Predictive Control [23]) could be cited as a
closely related (and computationally cheaper) method that
in some cases, is equivalent to DeePC [24], [25]; however,
it is not as straightforward to perform online updates. As
a last example, GPC (Generalized Predictive Control) is a
compromise between SPC and DeePC [26], in terms of both
flexibility and compute cost.

We introduce a new reformulation for various DeePC OCP
that does not rely on SVD, nor any specific optimization
method. This reformulation is equivalent (in terms of optimal
value function and optimal input) to a reference OCP, and
we demonstrate it gives the same results while taking less
time to compute. The proposed reformulation also opens new
possibilities regarding data managing, as it allows efficient
incremental updates of the underlying matrices, and thus the
possibility to apply exponential forgetting of data. Experi-
ments illustrate the advantages of the proposed method.

The rest of this paper is organized as follows. Section II
presents the Hankel-based DeePC problem formulation. In
Section III, we show our main contribution, that is an equiv-
alent reformulation with reduced dimension. We also show
how the underlying matrices can be iteratively constructed
and how exponential forgetting can be easily implemented.
Experimental validation of the proposed method and compar-
ison to the standard one is given in Section IV. A conclusion
is given in Section V.

II. PRELIMINARIES

Notation

• The operator col(·) stacks up its vector arguments.
• For a sequence {zk}Mk=m and a, b ∈ [m,M ] we use the

following notation for a stacked window:

z[a,b] = col(za, za+1, . . . , zb)

With a slight abuse of notations, we write z for z[m,M ].
• For a sequence {zk}Nk=1 with zk ∈ Rnz , we denote the

Hankel matrix HL(z) ∈ RLnz×(N−L+1) as

HL(z) =
[
z[1,L] z[2,L+1] . . . z[N−L+1,N ]

]
.

• A vector or sequence computed at time t is denoted by
·(t), e.g., {zk(t)}Mk=m.

• A vector of ones of length q is denoted by 1q .
• The Kronecker product is denoted by ⊗.
• Quadratic forms are denoted: ∥x∥2K = x⊤Kx,K ⪰ 0



• For a (semi-)positive definite matrix K, K
1
2 is the only

(semi-)positive definite matrix such that K =
(
K

1
2

)2

.
• The Moore-Penrose inverse of a matrix A is denoted

A†. It satisfies
A†AA⊤ = A⊤. (1)

• The range space of a matrix A is denoted im(A), and
its null space is ker(A).

A. Willems’ Fundamental Lemma

We recall Willems’ fundamental lemma for affine systems
[27], [28], as we use it in examples. However, the “original”
version for LTI systems [1] would also fit in the reformula-
tions.

Let B a controllable and observable affine system of order
n, with nu inputs and ny outputs.

Definition 1: A sequence {zk}Nk=1 with zk ∈ Rq is said
to be persistently exciting of order M if

rank(HM (z)) = qM.
Let

(
ud = {ud

k}Nk=1, yd = {ydk}Nk=1

)
be a series of inputs

and outputs of B.
Theorem 1: If ud is persistently exciting of order L +

n + 1, then (u, y) with u = col(u1, . . . , uL) and y =
col(y1, . . . , yL) is a trajectory of length L of B if and only
if

∃α ∈ RN−L+1,

1⊤
N−L+1

HL(u
d)

HL(y
d)

α =

1u
y

 . (2)

B. Data Enabled Predictive Control

Consider the following formulation that can used for some
of DeePC problems, e.g., [8], [14], [16], [18]:

Compute f(Wg∗) with (3a)
g∗ ∈ argmin

g
J(Wg) + h(∥g∥K) (3b)

st. Wg ∈ W (3c)

with h increasing and K ≻ 0.
In the typical setting, W contains a (mosaic) Hankel

matrix, J represents a tracking objective, and h(∥g∥K) is
a regularization term; f retrieves the optimal input u∗ from
Wg∗.

For example, consider the following illustrative DeePC
tracking problem based on Theorem 1:

Compute ū with

g∗ ∈ argmin
g

L−1∑
k=0

∥ȳk − yr∥2Q + λσ∥σ∥22 + λg∥g∥22 (4a)

st.

{
umin ≤ ū[0,L] ≤ umax

ū[−n,−1] = u[t−n,t−1]

(4b)
1⊤

N−L−n+1

HL+n(u
d)

HL+n(y
d)

 g =

1ū
ȳ


ȳ[−n,−1] = y[t−n,t−1] + σ

(4c)

with Q,λσ, λg cost parameters, and umin, umax input
bounds. In this problem, yr is the reference output, ū
and ȳ are the predicted (planned) trajectory, and σ is a
slack variable allowing for small deviation from the past
measurements; these variables are derived from g in (4c).

Then the DeePC problem (4) can be written as (3) choos-
ing

W =

1⊤
N−L−n+1

HL+n(u
d)

HL+n(y
d)

 ; h(∥g∥K) = λg∥g∥22 (5)

J(Wg) = ∥HL(y
d)g − ȳr∥2Q̄ = ∥SyWg − ȳr∥2Q̄ (6)

f(Wg) = HL(u
d)g = SuWg (7)

with

ȳr =

[
y[t−n,t−1]

1L ⊗ yr

]
; Q̄ =

[
λσInny 0

0 IL ⊗Q

]
Su =

[
0 ILnu

0
]
; Sy =

[
0 0 ILny

]
.

Notice that W not only contains the data (ud, yd) but also
constraints that g must satisfy. Rows of W can then be
selected to retrieve Hankel matrices, in our case with Su, Sy .

III. REDUCING THE PROBLEM SIZE

The application of DeePC relies on solving quadratic
problems involving matrix W from (5). Let #rows(W ) ×
#cols(W ) be the dimension of W . #cols(W ) depends on
N , the size of the dataset (ud, yd), which is in general much
larger than the other dimensions, such that #cols(W ) ≫
#rows(W ). Therefore, the larger the dataset, the larger the
computational burden. This is a strong restriction to the
applicability of DeePC, since more data usually means a
better representation of the system [14], [29]. In this paper,
we propose a reformulation of Problem 3 which relies on a
matrix of dimension #rows(W )×#rows(W ).

A. Range Space Equivalence
We heavily rely on the following lemma to derive our

problem reformulation:
Lemma 1 (Range space equivalence): Let K ∈ Rn×n a

positive definite matrix. Then, for any matrix A ∈ Rm×n:

im(A) = im(AKA⊤). (8)

In particular, with K = I:

im(A) = im(AA⊤). (9)

Proof:
Since K ≻ 0, for any x ∈ Rm it holds

AKA⊤x = 0 =⇒ ∥A⊤x∥K = 0 =⇒ A⊤x = 0

yielding
A⊤x = 0 ⇐⇒ AKA⊤x = 0,

and thus ker(A⊤) = ker(AKA⊤). Using the fact that
im(A) =

(
ker(A⊤)

)⊥
, we obtain

im(A) =
(
ker(A⊤)

)⊥
=

(
ker(AKA⊤)

)⊥
= im(AKA⊤).



B. Problem reformulation

We propose the following reformulation of Problem 3,
which can reduce the problem size, through the following
theorem:

Theorem 2 (Problem equivalence): Problem 3 is equiva-
lent to Problem 10, i.e. they have the same output and optimal
function value:

Compute f(Gα∗) with (10a)
α∗ ∈ argmin

α
J(Gα) + h(∥α∥G) (10b)

st. Gα ∈ W (10c)

with G = WK−1W⊤.
Proof: We will show the equivalence by showing that

the solutions g∗ of Problem 3 and α∗ of Problem 10 satisfy
Wg∗ = Gα∗ and ∥g∗∥K = ∥α∗∥G.

Since K ≻ 0, so is K−1. Lemma 1 ensures

∀g,∃α,Wg = WK−1W⊤α = Gα (11)

Let g, α satisfying (11), and rewrite I = K− 1
2K

1
2 and

K−1 = K− 1
2K− 1

2 . We then have

WK− 1
2K

1
2 g = WK− 1

2K− 1
2W⊤α (12)

By definition of the Moore-Penrose inverse, for any solution
of the given linear system Ax = b, there exists c such that
x = A†b + (I − A†A)c. Applying this to (12), with A =
WK− 1

2 , we get

∃c,K 1
2 g =

(
WK− 1

2

)†
WK− 1

2K− 1
2W⊤α (13)

+

(
I−

(
WK− 1

2

)†
WK− 1

2

)
c (14)

=K− 1
2W⊤α+ Pc (15)

with P =

(
I−

(
WK− 1

2

)†
WK− 1

2

)
, where the last equal-

ity follows from (1). Then, fixing c

∥g∥2K =∥K 1
2 g∥22

=∥K− 1
2W⊤α+ Pc∥22

=∥K− 1
2W⊤α∥22 + ∥Pc∥22

since, by definition, PK− 1
2W⊤ = WK− 1

2P = 0. Finally

∥g∥2K =∥W⊤α∥2K−1 + ∥Pc∥22
=∥α∥2G + ∥Pc∥22.

Then, for a given value of Wg = Gα, the minimum of ∥g∥K
(as well as the minimum of h(∥g∥K)) is attained if Pc = 0.
We then have, for solutions g∗ and α∗:{

f(Wg∗) = f(Gα∗)

J(Wg∗) + h(∥g∗∥K) = J(Gα∗) + h(∥α∗∥G).
(16)

C. Iterative construction

It turns out that problem reformulation given in Theorem 2
also has an advantage in terms of memory requirements.
Indeed, we show in this section that G can be constructed
incrementally.

We now take K diagonal, and denote ki > 0 the i-th
diagonal element of K. Typically, W would contain Hankel
matrices of input/output samples:

W =

 A
HL(u

d)
HL(y

d)

 (17)

with A describing constraints, e.g. as in (2).
We aim at “updating” W , that is, to add (or remove) a

column. This typically happens when a new data sample is
appended to (ud, yd), and the corresponding Hankel matrices
gain a new column.

Notice how G is constructed, with wi the i-th column of
W :

G =WK−1W⊤

=

#cols(W )∑
i=1

1

ki
wiw

⊤
i

This means appending a column wnew, associated to a weight
knew, to W amounts to a matrix addition with G:

Wnew =
[
W wnew

]
=⇒ Gnew =WnewK

−1
newW

⊤
new

=WK−1W⊤ +
1

knew
wneww

⊤
new

and we recognize

Gnew = G+
1

knew
wneww

⊤
new (18)

A column wrem (with the weight krem) can also be removed
from W : writing W =

[
Wnew wrem

]
and combining with

(18) yields

Gnew = G− 1

krem
wremw⊤

rem (19)

Note that—in general—neither W,K (nor K−1) need to
be explicitly computed nor stored at any time. This allows
potentially huge datasets while keeping a reasonable space
and time complexity.

The process can be tweaked if K is to be modified
(other than adding/removing columns), as we show next with
exponential forgetting.

D. Exponential forgetting

Using the iterative construction of matrix G, achieving
what can be interpreted as exponential forgetting is possible.
Exponential forgetting is widely used in different contexts,
including recursive least squares, state observers, and adap-
tive control. Its appeal is important since it provides a simple
framework for adaptive models, and it is well understood, see
[30] and references therein.



Let 0 < ρ < 1 be the forgetting factor. We denote with
w−i the i-th most recent column of W : if new columns are
appended to the right of W , we have w−i = w#cols(W )+1−i

(similarly, we define k−i = k#cols(W )+1−i).
Intuitively, ρj represents “how much” we should use w−j .

This can be translated as k−j =
k0

ρj , with some k0 > 0: older
samples are more penalized. We take k0 = ρ for simplicity,
without loss of generality, since h can apply any scalar factor.
Then at each time step t, W and K are updated as such:

Wt+1 =
[
Wt wt+1

]
Kt+1 =

1

ρ

[
Kt 0
0 ρ

]
In turn, G can be updated this way:

Gt+1 =Wt+1K
−1
t+1W

⊤
t+1 (20)

=ρWtK
−1
t W⊤

t + wt+1w
⊤
t+1 (21)

=ρGt + wt+1w
⊤
t+1. (22)

Note that, if {wt}t>0 is bounded, then so is {Gt}t>0, even
if no column removal is performed.

However, one concern remains: if numerous similar new
entries are added, informative data is more and more com-
pressed, and the matrix G becomes ill-conditioned, making
(10) hard to solve numerically. This is a common problem
of the lack of excitation and can be addressed using, e.g.,
variable forgetting factor [30], or adding a second data matrix
[31], as is explained in Section IV-B.

E. Extension to mosaic-Hankel matrices

1) Considering two datasets: In practice, if is useful to
formulate Problem 3 using two datasets (i.e., two separate
trajectories instead of a long one) to help overcome the lack
of excitation problem [31], [32]. In this case, W becomes a
mosaic-Hankel matrix:

Wt =

1⊤
N−L−n+1 1⊤

No−L−n+1

HL+n(u
d) HL+n(u[t−No,t−1])

HL+n(y
d) HL+n(y[t−No,t−1])

 (23)

Typically, (ud
k, y

d
k)k∈[1,N ] is first initialized to satisfy Theo-

rem 1 conditions, e.g., by injecting a probe signal, while
(uk, yk)k∈[t−No,t−1] is dynamically updated to adapt to
possible operating points variation. In a certain sense, the
first (initial) dataset can be considered as a backup one for
the case when the updated dataset is not exciting.

The proposed reformulation directly extends to this setting.
Indeed, since Theorem 2 makes no assumption on the
structure of W , it also holds in this case.

2) Iterative construction and exponential forgetting: The
iterative construction, with exponential forgetting, can also
be adapted to the case of mosaic Hankel-matrices. Consider

Wt =

1⊤
N−L−n+1 1⊤

t−L−n

HL+n(u
d) HL+n(u[1,t−1])

HL+n(y
d) HL+n(y[1,t−1])

 (24)

Again, the first dataset (ud
k, y

d
k)k∈[1,N ] is initialized at the

beginning of the experiment; the second (uk, yk)k∈[1,t−1] is

dynamically updated. To implement the iterative construction
of G, we first split W and K:

Wt =
[
Wbak Wexp,t

]
(25)

Kt =

[
Kbak 0
0 Kexp,t

]
(26)

=⇒ Gt = Gbak +Gexp,t (27)

with

Wbak =

1⊤
N−L−n+1

HL+n(u
d)

HL+n(y
d)

 ; Wexp,t =

 1⊤
t−L−n

HL+n(u[1,t−1])
HL+n(y[1,t−1])


(28)

Gbak = WbakK
−1
bakW

⊤
bak ; Gexp,t = Wexp,tK

−1
exp,tW

⊤
exp,t

(29)

(27) allows us to build Gt as the sum of a fixed Gbak and
an recursively updated matrix Gexp,t following (22).

IV. EXAMPLES AND EXPERIMENTAL RESULTS

We first demonstrate the efficiency of Problem 10 com-
pared to Problem 3 in a simulation experiment, by showing
that it produces the same closed-loop trajectory, but requiring
only a fraction of the computation time.

We then study a real-system implementation of the
reduced-formulation DeePC with exponential forgetting,
where we consider two possible options: using a single
dataset and using a mosaic two-dataset modification. This
experiment highlights the advantage of having a “backup”
dataset to circumvent the possible lack of excitation men-
tioned in Section III-D.

As the real-time testbed, we consider a heat-blower system
with two actuators, blower fan and heating resistance, and
two outputs given by a flow meter and a thermocouple. This
system is non-linear and was shown to need the two-datasets
formulation of the DeePC framework; see [31] for more
details.

The simulation model required for the validating experi-
ment was obtained by identification, using truncated Volterra
series of degree 2.

A. Simulation: compute time difference

In order to compare the closed-loop trajectories induced
by Problem 10 and Problem 3, we consider a simulated
numerical experiment. We formulate the optimal control
problem as Problem 4 with Q = I, λσ = 10, λg = 1. The
prediction horizon is set to L = 41. The initial conditions
consist of n = 8 samples, and the sample time is Ts = 0.3s.
The length of the initial dataset takes different values to show
the impact on compute time: N ∈ {246, 348, 464, 696, 928}
samples. The length of the updated dataset is kept constant
at No = L+ n+ 1.

Simulations are carried out with MATLAB®2023b, on a
laptop equipped with an Intel®Core i7-8750H six-core CPU.
The solver for quadprog uses the “active set” method,
with default parameters and ‘the initial guess x0 = 0. The
computational time is estimated using the MATLAB Profiler.
Each experiment is run at least 2 times to ensure consistency
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Fig. 1. Input (left) - output (right) trajectory (top) and the absolute
difference between formulations (bottom), for a run with N = 464. Notice
the initial input excitation during N time steps. Thin solid (yellow and
purple) line correspond to the reference signal yr . The order of magnitude of
the difference between inputs due to our reformulation is around 5×10−3,
which is negligible in our setup.
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Fig. 2. Computation time and number of iterations performed by
quadprog at each time step, for N = 464. Blue and red curves show our
reformulation, while the original is in purple and yellow. Our reformulation
sometimes takes more iterations than the original due to the numerical
behavior of G, but the computation time is significantly and consistently
lower.

of these estimates. In all figures, the references for the two
output dimensions are shown by purple and yellow lines.

Fig. 1 shows, the closed-loop trajectory y and the corre-
sponding command signal u produced by Problem 10 and
the differences with respect to the same signals obtained
solving Problem 3. It clearly appears that both methods are
essentially equivalent. On the other hand, the computation
time of the proposed method is consistently lower through
the entire experiment, as shown in Fig. 2 (approximately
5ms, versus 12ms for the original).

We then compare the average computation time for the
different dataset sizes N , with a fixed prediction horizon L =
41 samples, on Fig. 3. As expected, the computation time
for Problem 3 increases greatly (seemingly in a polynomial
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N . Our reformulation is shown on the blue line, while the original is the
red curve. As expected, the original formulation takes more and more time
to solve as the quantity of data increases, while our reformulation keeps an
almost constant (with minor variations) compute time.
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Fig. 4. Input (left) - output (right) trajectory of a real system, with
exponential forgetting. Thin solid (yellow and purple) lines correspond to
the reference signal yr . The presence of a backup dataset (top) clearly
improves tracking performance as data can be “flattened” by the Exponential
Forgetting (bottom).

fashion) with N , contrarily to Problem 10. Small variations
still incur, due to the fact that compute time is not strictly
deterministic: on the one hand, quadprog’s algorithm can
perform a variable amount of iterations for the same problem
size (as seen on Fig. 2 top chart); on the other hand,
the speed of each operation performed by a CPU can be
affected by several factors (such as background load or CPU
temperature; hence variations in Fig. 2 bottom chart).

B. Real system

We now present an implementation of exponential for-
getting on a real system using the two-datasets formulation
given in Section III-E.2. Since the original full-size problem
formulation does not allow for a straightforward exponential
forgetting modification, we consider only the reduced refor-
mulation here.

We set ρ = 0.99, N = 246. We take Kbak = 20I so
that the most recent data is preferred to the backup dataset.
We run one experiment with the backup dataset and one
without (where Gt = Gexp,t) to show its effect (see Fig. 4).



It is pretty clear that, while tracking is somewhat achieved
with only exponential forgetting, the backup dataset improves
performance significantly. We emphasize that adding this
supplementary data does not directly impact the computa-
tional complexity of solving the OCP.

C. Discussion

The presented simulation and experimental results illus-
trate the benefits of the proposed reformulation. However,
these benefits come with limits. First, we assumed a specific
form of optimization problem, which gives a direction for
future works: in particular, we define the regularization based
on a positive definite quadratic form ∥g∥K , but it is not
the only way to go (there exist regularizations based on
projectors (I−Z†Z with Z = [U⊤ Y ⊤

p ]⊤) or ℓ1 norm [33],
[25], [2], [34]). Furthermore, if h(∥g∥K) is strictly convex,
there is no guarantee that h(∥α∥G) still is: if W does not
have full row rank, we only have K ≻ 0 =⇒ G ⪰ 0.
Finally, despite the globally better compute time, matrix G
has a worse condition number than W (e.g. with K = I,
cond(G) = cond(W )2), which can deteriorate numerical ac-
curacy, or require more iterations in optimization algorithms.
This also leaves room for improvement.

V. CONCLUSION

In this paper, we proposed a computationally efficient
reformulation for DeePC, based on range space equivalence,
that only involves the replacement of two matrices, but
relies on problems of much smaller dimension. We proved
that the reformulation is equivalent to the original problem,
and the reformulation allows for efficient data management
through, e.g., exponential forgetting. Experiments validated
the proposed method and highlighted the huge computational
savings it can bring. We demonstrated the possibility of mix-
ing different data management strategies by coupling a fixed
dataset with exponential forgetting. This work opens several
perspectives, in particular extending the method to other
regularization terms, or addressing the potential conditioning
issues.
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