Communication Dans Un Congrès Année : 2024

Anti-Poaching as a Partially Observable Stochastic Game

Résumé

In today’s world, endangered species are threatened by widespread poaching, requiring intel- ligent land patrol strategies to effectively detect and prevent such activities. Several recent works have developed game-theoretic models for anti-poaching, wherein determining equilib- rium strategies, often based on the Nash Equilibrium (NE) 1 , leads to effective patrol strate- gies. Additionally, due to the complexity and imperfect knowledge of the models, Multi- Agent Reinforcement Learning (MARL) methods are usually proposed to learn these strategies. Yet, even with anti-poaching emerging as a popular domain for MARL, the absence of both a general model and a publicly accessible implementation has hindered both the evaluation and development of new solutions. In this context, the objective of this work is two-fold: (i) formalize anti-poaching as a Partially Observable Stochastic Game (POSG) capable of gen- eralizing existing models; and (ii) provide a publicly available implementation of this POSG in PettingZoo (one of the most popular APIs to implement MARL environments).
Fichier principal
Vignette du fichier
Roadef24.pdf (286.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04525926 , version 1 (29-03-2024)

Identifiants

  • HAL Id : hal-04525926 , version 1

Citer

S. S. Prasanna Maddila, Régis Sabbadin, Meritxell Vinyals. Anti-Poaching as a Partially Observable Stochastic Game. 25ème édition du congrès annuel de la Société Française de Recherche Opérationnelle et d'Aide à la Décision ROADEF 2024, Laboratoire Modélisation Informations & Systèmes (MIS UR 4290) et Université de Picardie Jules Verne (UPJV), Mar 2024, Amiens, France. ⟨hal-04525926⟩
26 Consultations
37 Téléchargements

Partager

More