Bias versus variance when fitting multi-species molecular lines with a non-LTE radiative transfer model - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue (Data Paper) Astronomy and Astrophysics - A&A Année : 2024

Bias versus variance when fitting multi-species molecular lines with a non-LTE radiative transfer model

Maryvonne Gerin
Ivana Bešlić
M. Gaudel
Dariusz C Lis
Nicolas Peretto
  • Fonction : Auteur
  • PersonId : 965998

Résumé

Robust radiative transfer techniques are requisite for efficiently extracting the physical and chemical information from molecular rotational lines. We study several hypotheses that enable robust estimations of the column densities and physical conditions when fitting one or two transitions per molecular species. We study the extent to which simplifying assumptions aimed at reducing the complexity of the problem introduce estimation biases and how to detect them. We focus on the CO and HCO+ isotopologues and analyze maps of a 50 square arcminutes field. We used the RADEX escape probability model to solve the statistical equilibrium equations and compute the emerging line profiles, assuming that all species coexist. Depending on the considered set of species, we also fixed the abundance ratio between some species and explored different values. We proposed a maximum likelihood estimator to infer the physical conditions and considered the effect of both the thermal noise and calibration uncertainty. We analyzed any potential biases induced by model misspecifications by comparing the results on the actual data for several sets of species and confirmed with Monte Carlo simulations. The variance of the estimations and the efficiency of the estimator were studied based on the Cramér-Rao lower bound. Column densities can be estimated with 30% accuracy, while the best estimations of the volume density are found to be within a factor of two. Under the chosen model framework, the peak 12CO(1−0) is useful for constraining the kinetic temperature. The thermal pressure is better and more robustly estimated than the volume density and kinetic temperature separately. Analyzing CO and HCO+ isotopologues and fitting the full line profile are recommended practices with respect to detecting possible biases. Combining a non-local thermodynamic equilibrium model with a rigorous analysis of the accuracy allows us to obtain an efficient estimator and identify where the model is misspecified. We note that other combinations of molecular lines could be studied in the future.
Fichier principal
Vignette du fichier
ms.pdf (8.21 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04523850 , version 1 (28-03-2024)

Licence

Paternité

Identifiants

  • HAL Id : hal-04523850 , version 1

Citer

Antoine Roueff, Jérôme Pety, Maryvonne Gerin, Léontine Ségal, Javier Goicoechea, et al.. Bias versus variance when fitting multi-species molecular lines with a non-LTE radiative transfer model: Application to the estimation of the gas temperature and volume density. Astronomy and Astrophysics - A&A, In press. ⟨hal-04523850⟩
5 Consultations
5 Téléchargements

Partager

Gmail Facebook X LinkedIn More