On a probabilistic extension of the Oldenburger–Kolakoski sequence - Archive ouverte HAL
Article Dans Une Revue RAIRO - Theoretical Informatics and Applications (RAIRO: ITA) Année : 2024

On a probabilistic extension of the Oldenburger–Kolakoski sequence

Chloé Boisson
  • Fonction : Auteur
Damien Jamet
  • Fonction : Auteur correspondant
  • PersonId : 1185869

Connectez-vous pour contacter l'auteur
Irène Marcovici
  • Fonction : Auteur

Résumé

The Oldenburger–Kolakoski sequence is the only infinite sequence over the alphabet {1, 2} that starts with 1 and is its own run-length encoding. In the present work, we take a step back from this largely known and studied sequence by introducing some randomness in the choice of the letters written. This enables us to provide some results on the convergence of the density of 1’s in the resulting sequence. When the choice of the letters is given by an infinite sequence of i.i.d. random variables or by a Markov chain, the average densities of letters converge. Moreover, in the case of i.i.d. random variables, we are able to prove that the densities even almost surely converge.
Fichier principal
Vignette du fichier
ita220055.pdf (732.59 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04522642 , version 1 (26-03-2024)

Identifiants

Citer

Chloé Boisson, Damien Jamet, Irène Marcovici. On a probabilistic extension of the Oldenburger–Kolakoski sequence. RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), 2024, 58, pp.11. ⟨10.1051/ita/2024005⟩. ⟨hal-04522642⟩
11 Consultations
20 Téléchargements

Altmetric

Partager

More