Direct parametrisation of invariant manifolds for non-autonomous forced systems including superharmonic resonances
Résumé
The direct parametrisation method for invariant manifold is a model-order reduction technique that can be applied to nonlinear systems described by PDEs and discretised e.g. with
a finite element procedure in order to derive efficient reduced-order models (ROMs). In non-linear vibrations, it has already been applied to autonomous and non-autonomous problems
to propose ROMs that can compute backbone and frequency-response curves of structures with geometric nonlinearity. While previous developments used a first-order expansion to
cope with the non-autonomous term, this assumption is here relaxed by proposing a different treatment. The key idea is to enlarge the dimension of the parametrising coordinates
with additional entries related to the forcing. A new algorithm is derived with this starting assumption and, as a key consequence, the resonance relationships appearing through
the homological equations involve multiple occurrences of the forcing frequency, showing that with this new development, ROMs for systems exhibiting a superharmonic resonance,
can be derived. The method is implemented and validated on academic test cases involving beams and arches. It is numerically demonstrated that the method generates efficient ROMs
for problems involving 3:1 and 2:1 superharmonic resonances, as well as converged results for systems where the first-order truncation on the non-autonomous term showed a clear limitation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|