Machine learning for the sensitivity analysis of a model of the cellular uptake of nanoparticles for the treatment of cancer - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Machine learning for the sensitivity analysis of a model of the cellular uptake of nanoparticles for the treatment of cancer

Résumé

Experimental studies on the cellular uptake of nanoparticles (NPs), useful for the investigation of NP-based drug delivery systems,are often difficult to interpret due to the large number of parameters that can contribute to the phenomenon. It is therefore of greatinterest to identify unsignificant parameters to reduce the number of variables used for the design of experiments. In this work,a model of the wrapping of elliptical NPs by the cell membrane is used to compare the influence of the aspect ratio of the NP,the membrane tension, the NP-membrane adhesion, and its variation during the interaction with the NP, on the equilibrium stateof the wrapping process. Several surrogate models, such as Kriging, Polynomial Chaos Expansion (PCE), and Artificial NeuralNetworks (ANN) have been built and compared in order to emulate the computationally expensive model. Only the ANN-basedmodel outperformed the other approaches by providing much better predictivity metrics and could therefore be used to compute thesensitivity indices. Our results showed that the NP’s aspect ratio, the initial NP-membrane adhesion, the membrane tension and thedelay for the increase of the NP-membrane adhesion after receptor dynamics are the main contributors to the cellular internalizationof the NP, while the influence of other parameters is negligible
Fichier sous embargo
Fichier sous embargo
0 2 17
Année Mois Jours
Avant la publication
samedi 22 mars 2025
Fichier sous embargo
samedi 22 mars 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04517876 , version 1 (22-03-2024)

Licence

Identifiants

  • HAL Id : hal-04517876 , version 1

Citer

Sarah Iaquinta, Shahram Khazaie, Samer Albanna, Sylvain Fréour, Frédéric Jacquemin. Machine learning for the sensitivity analysis of a model of the cellular uptake of nanoparticles for the treatment of cancer. 2024. ⟨hal-04517876⟩
57 Consultations
2 Téléchargements

Partager

More