Synoptic and planetary-scale dynamics modulate antarctic atmospheric river precipitation intensity - Archive ouverte HAL
Article Dans Une Revue Communications Earth & Environment Année : 2024

Synoptic and planetary-scale dynamics modulate antarctic atmospheric river precipitation intensity

Résumé

Although rare, atmospheric rivers substantially influence the interannual variability of Antarctic surface mass balance. Here we use MERRA-2 reanalysis to identify characteristics unique to atmospheric river environments by comparing (1) Analog (environments that feature high-low pressure couplets, similar to Atmospheric River environments, but no Atmospheric River), (2) Atmospheric River, and (3) Top Atmospheric River (highest precipitation) timesteps during 1980–2019 around Antarctica. We find significant differences between Atmospheric River and Analog environments including more intense and poleward-shifted mid-tropospheric geopotential height couplets as well as larger atmospheric moisture anomalies. We find similar significant enhancement in synoptic-scale dynamic drivers of Top Atmospheric Rivers compared to all Atmospheric River environments, but no significant difference in local integrated water vapor anomalies. Instead, our results highlight the importance of large-scale dynamic drivers during Top Atmospheric River timesteps, including amplified Rossby waves excited by tropical convection.
Fichier principal
Vignette du fichier
BWPFWC2024.pdf (2.78 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04505424 , version 1 (14-03-2024)

Licence

Identifiants

Citer

Rebecca Baiman, Andrew C Winters, Benjamin Pohl, Vincent Favier, Jonathan D Wille, et al.. Synoptic and planetary-scale dynamics modulate antarctic atmospheric river precipitation intensity. Communications Earth & Environment, 2024, 5 (1), pp.127. ⟨10.1038/s43247-024-01307-9⟩. ⟨hal-04505424⟩
33 Consultations
25 Téléchargements

Altmetric

Partager

More