Optimal sub-Gaussian variance proxy for truncated Gaussian and exponential random variables - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Optimal sub-Gaussian variance proxy for truncated Gaussian and exponential random variables

Résumé

This paper establishes the optimal sub-Gaussian variance proxy for truncated Gaussian and truncated exponential random variables. The proofs rely on first characterizing the optimal variance proxy as the unique solution to a set of two equations and then observing that for these two truncated distributions, one may find explicit solutions to this set of equations. Moreover, we establish the conditions under which the optimal variance proxy coincides with the variance, thereby characterizing the strict sub-Gaussianity of the truncated random variables. Specifically, we demonstrate that truncated Gaussian variables exhibit strict sub-Gaussian behavior if and only if they are symmetric, meaning their truncation is symmetric with respect to the mean. Conversely, truncated exponential variables are shown to never exhibit strict sub-Gaussian properties. These findings contribute to the understanding of these prevalent probability distributions in statistics and machine learning, providing a valuable foundation for improved and optimal modeling and decision-making processes.
Fichier principal
Vignette du fichier
truncated_sub_Gaussian.pdf (525.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04503494 , version 1 (13-03-2024)

Licence

Identifiants

  • HAL Id : hal-04503494 , version 1

Citer

Mathias Barreto, Olivier Marchal, Julyan Arbel. Optimal sub-Gaussian variance proxy for truncated Gaussian and exponential random variables. 2024. ⟨hal-04503494⟩
163 Consultations
80 Téléchargements

Partager

More