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Optimal sub-Gaussian variance proxy

for truncated Gaussian and exponential random variables

Mathias Barreto∗, Olivier Marchal†, and Julyan Arbel‡

March 13, 2024

Abstract

This paper establishes the optimal sub-Gaussian variance proxy for truncated Gaussian and trun-
cated exponential random variables. The proofs rely on first characterizing the optimal variance
proxy as the unique solution to a set of two equations and then observing that for these two trun-
cated distributions, one may find explicit solutions to this set of equations. Moreover, we establish
the conditions under which the optimal variance proxy coincides with the variance, thereby charac-
terizing the strict sub-Gaussianity of the truncated random variables. Specifically, we demonstrate
that truncated Gaussian variables exhibit strict sub-Gaussian behavior if and only if they are sym-
metric, meaning their truncation is symmetric with respect to the mean. Conversely, truncated
exponential variables are shown to never exhibit strict sub-Gaussian properties. These findings con-
tribute to the understanding of these prevalent probability distributions in statistics and machine
learning, providing a valuable foundation for improved and optimal modeling and decision-making
processes.

1 Introduction

The sub-Gaussian property, a fundamental characteristic extensively explored in seminal works such
as Buldygin and Kozachenko (1980), Boucheron et al. (2013), Pisier (2016), has played a pivotal role
in shaping the landscape of probability distributions. This property, defined by the tail behavior
of random variables, has garnered significant attention for its implications in various mathematical
disciplines such as concentration inequalities and large deviation estimates (Hoeffding, 1963, Kearns
and Saul, 1998, Ledoux, 1999, Götze, 1999, Raginsky and Sason, 2013, Boucheron et al., 2013,
Berend and Kontorovich, 2013, Perry et al., 2020, Ben-Hamou et al., 2017), random series in
relation to the geometry of Banach spaces (Pisier, 1986, Chow, 2013), spectral properties of random
matrices (Litvak et al., 2005, Rudelson and Vershynin, 2009), or Bayesian statistics (Elder, 2016,
Catoni and Giulini, 2018, Vladimirova et al., 2019, Lee et al., 2021, Vladimirova et al., 2021). More
broadly, the sub-Gaussian property holds paramount importance in machine learning and artificial
intelligence applications (Devroye et al., 2016, Cherapanamjeri et al., 2019, Genise et al., 2019,
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Metelli et al., 2021, Depersin and Lecué, 2022, Choi et al., 2023, Xie et al., 2023, Michal, 2023,
Cole and Lu, 2024).

The sub-Gaussianity of a random variable is a key determinant of its concentration properties
which can be defined as follows.

Definition 1.1. A scalar random variable X is called sub-Gaussian if there exists some s ≥ 0 such
that for all θ ∈ R:

E[exp(θ(X − E[X]))] ≤ exp

(
s2θ2

2

)
. (1)

Any s2 satisfying Equation (1) is called a variance proxy, and the smallest such s2 is called the
optimal variance proxy, which shall be denoted as ∥X∥2vp. It is well known that

Var[X] ≤ ∥X∥2vp,

and a random variable satisfying Var[X] = ∥X∥2vp is called strictly sub-Gaussian.

Note that there exist many equivalent ways for defining this sub-Gaussian property, each can be
more useful depending on the sought application (see Proposition 2.5.2 in Vershynin, 2018). The
one recalled in Equation (1) is often referred to as the Laplace condition. It is equivalent to the
following condition on the tails of X:

∃C > 0 such that ∀ t ≥ 0, P(|X| ≥ t) ≤ 2e−
t2

C2 ,

as well as the following condition on the moments of X:

∃C > 0 such that ∀ p ≥ 1, E[|X|p] ≤ Cpp
p
2 .

This shows that a sub-Gaussian random variable has finite moments of any order larger than one.

Truncated random variables. The focus of this paper lies on the relevance of the sub-Gaussian
property to truncated Gaussian and truncated exponential distributions. Truncated distributions
emerge as natural models when data exhibits inherent constraints or boundaries. These distribu-
tions find pervasive use in statistics and machine learning, where understanding and modeling the
statistical properties of real-world phenomena are paramount.

Notable fields include survival analysis, for handling censoring (Balakrishnan and Aggarwala,
2000), reinforcement learning and bandit problems, for representing action probabilities or re-
wards that are bounded within certain limits (Bubeck et al., 2012, Lattimore and Szepesvári, 2020,
Szepesvári, 2010), Bayesian statistics, to represent prior knowledge or beliefs about parameters that
are restricted to certain intervals (Gelman et al., 2013), or sampling procedures, to reduce Monte
Carlo error (Ionides, 2008, Wawrzynski and Pacut, 2007). More broadly, handling truncation in
data is useful in countless applications, ranging from clinical trials, financial modeling, to environ-
mental modeling, underscoring the ubiquitous nature of truncated distributions in contemporary
research and applications.

Contributions. In general, establishing that a random variable is sub-Gaussian might be easy,
but complication stems from obtaining the optimal variance proxy. This has been achieved for
the most commonly used distributions, including the beta and multinomial distributions (Marchal
and Arbel, 2017), Bernoulli, binomial, Kumaraswamy, and triangular distributions (Arbel et al.,
2020). In the present work, we focus on establishing the optimal variance proxy for truncated
Gaussian and truncated exponential distributions. The proofs are based initially on defining the
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optimal variance proxy as the unique solutions to a pair of equations. Subsequently, it is observed
that explicit solutions to this set of equations can be found for the two truncated distributions in
question.

Furthermore, we establish the conditions under which the optimal variance proxy matches
the variance, thereby identifying the strict sub-Gaussianity of the truncated random variables.
In detail, we illustrate that truncated Gaussian variables display strict sub-Gaussian behavior if
and only if they exhibit symmetry, meaning their truncation is symmetric relative to the mean.
Conversely, truncated exponential variables are demonstrated to lack strict sub-Gaussian properties
consistently. These results enhance our comprehension of these common probability distributions
in statistics and machine learning, laying a solid groundwork for enhanced and optimal modeling
and decision-making processes.

Outline. We present the optimal sub-Gaussian variance proxy and the strict sub-Gaussianity
results for truncated Gaussian and truncated exponential random variables respectively in Section 2
and in Section 3, along with the main proofs. Future research directions are proposed in Section 4.
Technical details on the proofs are deferred to Appendix A and Appendix B, respectively for
truncated Gaussian and truncated exponential random variables.

2 Truncated normal random variables

This section establishes the optimal variance proxy for a truncated normal variable. Observe that we
a priori know already that any truncated random variable is sub-Gaussian by Hoeffding’s Lemma
(when it is truncated along a finite interval).

In general, if X is a random variable with density fX and cumulative distribution function FX

then its truncated version (which we shall denote by XT) inside the interval (a, b) (for a < b) has
the form:

fXT
(x) =

{
fX(x)

FX(b)−FX(a) for x ∈ (a, b),

0 otherwise.

Let X ∼ N (µ, σ2) and ϕ(·),Φ(·) be the density and cumulative density of a standard normal
variable. If we truncate X on (a, b) then it is known that its moment generating function, mean
and variance are given by:

E
[
eθXT

]
= exp

{
θµ+ θ2

σ2

2

}[
Φ(β − σθ)− Φ(α− σθ)

Φ(β)− Φ(α)

]
,

E[XT] = µ+
ϕ(α)− ϕ(β)

Φ(β)− Φ(α)
σ,

Var[XT] = σ2

[
1− βϕ(β)− αϕ(α)

Φ(β)− Φ(α)
−
(
ϕ(α)− ϕ(β)

Φ(β)− Φ(α)

)2
]
,

(2)

where

α :=
a− µ

σ
, β :=

b− µ

σ
.

Our main result establishes the optimal variance proxy for this density, which turns out to have
a closed-form expression:
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Theorem 2.1. Let XT be a normal variable with mean µ ∈ R and variance σ2 ∈ R>0 truncated
along the interval (a, b) with a < b. Then its optimal variance proxy is given by:

∥XT∥2vp = σ2 ×


1− 2σ

b+a−2µ

ϕ(a−µ
σ

)−ϕ( b−µ
σ

)

Φ( b−µ
σ

)−Φ(a−µ
σ

)
if −∞ < a < b < +∞ and a+ b ̸= 2µ,

1− 2(b−µ)
σ

ϕ( b−µ
σ

)

2Φ( b−µ
σ

)−1
if −∞ < a < b < +∞ and a+ b = 2µ,

1 if a = −∞ and/or b = +∞.

In particular, XT is strictly sub-Gaussian if and only if a+b = 2µ, i.e. if and only if the truncation
is symmetric relative to the mean µ of the Gaussian variable.

In order to prove Theorem 2.1, let us first note that we can reduce the problem to the one of
truncating a standard Gaussian random variable. Consider the transformation Y := X−µ

σ and let
YT be the truncated standard normal along the interval (α, β). Then, we have the relation:

E
[
eθ(XT−E[XT])

]
=

∫ b

a
eθ(x−E[XT])

ϕ(x−µ
σ )

Φ( b−µ
σ )− Φ(a−µ

σ )

dx

σ

y=x−µ
σ=

∫ β

α
exp [θ(yσ + µ− E[XT])]

ϕ(y)

Φ(β)− Φ(α)
dy

= E
[
eσθ(YT−E[YT])

]
. (3)

That is, to optimally bound the centered moment generating function of XT, we can restrict
to optimally bounding that of YT, as (3) implies ∥XT∥2vp = σ2∥YT∥2vp. Hence, an equivalent
reformulation of Theorem 2.1 is the following.

Theorem 2.2. Let YT be a standard normal variable truncated in the interval (α, β) with α < β.
Then its optimal variance proxy is given by:

∥YT∥2vp =


1− 2(ϕ(α)−ϕ(β))

(α+β)(Φ(β)−Φ(α)) if −∞ < α < β < +∞ and α ̸= −β,

1− 2βϕ(β)
2Φ(β)−1 if −∞ < α < β < +∞ and α = −β,

1 if α = −∞ and/or β = +∞.

Theorem 2.1 and Theorem 2.2 are illustrated in Figure 1. Note that only the case β = −α (or,
equivalently, a + b = 2µ), yields strictly sub-Gaussian random variables. In this case, strict sub-
Gaussianity is equivalent to symmetry (with respect to the mode/mean of the original Gaussian
distribution). The relationship between symmetry and strict sub-Gaussianity is studied in Arbel
et al. (2020).

Proof of Theorem 2.2. Recall by Definition 1.1 that the optimal variance proxy of YT corresponds
to the smallest possible s2 ≥ 0 such that

ln

[
exp

(
−θ

(
ϕ(α)− ϕ(β)

Φ(β)− Φ(α)

)
+

θ2

2

)(
Φ(β − θ)− Φ(α− θ)

Φ(β)− Φ(α)

)]
≤ s2θ2

2
, ∀ θ ∈ R.
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Figure 1: Illustration of Theorem 2.1 and Theorem 2.2. The top panel represents the
variance (black curve) and variance proxy (orange curve) of truncated standard Gaussian variables
on intervals (α, β) with a fixed value of α = −2 and varying values for β ∈ {−0.5, 0, 0.5, 2}, with
colors from red to blue. The corresponding distributions are depicted on the bottom panel. Note
that only the case β = 2 yields a symmetric distribution, which turns out to be strictly sub-
Gaussian. See the blue dot on the right of the top panel where the variance and variance proxy are
equal.

By defining:

cα,β :=
ϕ(α)− ϕ(β)

Φ(β)− Φ(α)
, θ0 :=

α+ β

2

Fα,β(θ) := Φ(β − θ)− Φ(α− θ), fα,β(θ) := ln

[
Fα,β(θ)

Φ(β)− Φ(α)

]
hα,β(θ) := f ′

α,β(θ) =
ϕ(α− θ)− ϕ(β − θ)

Φ(β − θ)− Φ(α− θ)

h′α,β(θ) =
ϕ(α− θ)(α− θ)− ϕ(β − θ)(β − θ)

Φ(β − θ)− Φ(α− θ)
−
[
ϕ(α− θ)− ϕ(β − θ)

Φ(β − θ)− Φ(α− θ)

]2
,

this is equivalent to finding the smallest w := s2−1
2 ≥ −1

2 such that:

pα,β;w(θ) := wθ2 + cα,βθ ≥ fα,β(θ) , ∀ θ ∈ R. (4)

The delicate thing is understanding the right-hand side’s function behavior. Note that this
function is independent of the value of w. Let us first start with a lemma regarding the symmetry
of the polynomial pα,β;w and functions fα,β and hα,β.

Lemma 2.3. For all θ ∈ R it holds that:

pα,β;w

(
−
cα,β
2w

+ θ
)
= pα,β;w

(
−
cα,β
2w

− θ
)
, fα,β (θ0 − θ) = fα,β (θ0 + θ) ,

hα,β (θ0 − θ) = −hα,β (θ0 + θ) .

Proof of Lemma 2.3. The proof is immediate by direct computations.
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Figure 2: Illustration of the proof of Theorem 2.2 for α = −1 and β = 4, such that θ0 =
(α+ β)/2 = 3/2. The function fα,β is plotted in dashed black line, while three polynomials pα,β;w
are plotted in color: purple corresponds to the use of the optimal variance proxy, where we can
observe that fα,β and pα,β;wc are tangent at the purple dot with coordinates (α + β, 0). The red
curve corresponds to a variance proxy that is not optimal, while the value used for the blue curve
is not a variance proxy.

In particular observe that pα,β:w and fα,β share the symmetry line θ = θ0 only when w = − cα,β

2θ0
or when cα,β = 0. A second important point is to note that:

fα,β(0) = 0 = pα,β;w(0) , fα,β(2θ0) = 0 , f ′
α,β(0) = p′α,β;w(0).

Then, the crucial technical point of the proof of the theorem is the following lemma.

Lemma 2.4. The function hα,β is strictly convex on (−∞, θ0) and strictly concave on (θ0,+∞)
for all α < β.

Proof of Lemma 2.4. The proof follows from direct and technical computations and is detailed in
Appendix A.

Using Lemma 2.3 and Lemma 2.4, we obtain the optimal variance proxy for a truncated standard
normal random variable given in Theorem 2.2.

Case α and β finite. Observe that fα,β is strictly increasing on (−∞, θ0) and strictly decreasing
on (θ0,+∞). Thus, it achieves its maximum at θ = θ0. Using the strict concavity of hα,β inside the
interval (θ0,+∞) we propose a geometric proof where the optimal variance proxy case corresponds
to fitting the parabola θ 7→ pα,β;w(θ) inside the function fα,β as illustrated in Figure 2.

We now need to split into three cases.

Case α and β finite, α ̸= −β. Let us consider the value wc = ϕ(β)−ϕ(α)
(α+β)(Φ(β)−Φ(α)) = − cα,β

2θ0
corre-

sponding to a parabola that is tangent to fα,β at (0, cα,β) and (2θ0,−cα,β) and with a maximum at
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θ = θ0. Indeed, we have:

fα,β(0) = 0 = pα,β;wc(0),

fα,β(2θ0) = 0 = 4wcθ
2
0 + cα,βθ0 = pα,β;wc(2θ0),

f ′
α,β(θ0) = 0 = 2θ0wc + cα,β = p′α,β;wc

(θ0),

f ′
α,β(2θ0) = −cα,β = 4θ0wc + cα,β = p′α,β;wc

(2θ0),

f ′
α,β(0) = cα,β = p′α,β;wc

(0).

(5)

Let us define fα,β;w := fα,β − pα,β;w and hα,β;w := hα,β − p′α,β;w so that h′′α,β;w = h′′α,β because
pα,β;w is a parabola. We will now prove that inequality (4) holds for w = wc, i.e., we will check
that fα,β;wc(θ) ≤ 0 for all θ ∈ R. From Lemma 2.4, h′α,β;w is strictly increasing on (−∞, θ0) and
strictly decreasing on (θ0,+∞) and thus reaches its maximum at θ = θ0. Thus, h′α,β;w may have
at most 2 zeros and by Rolle’s theorem, hα,β;w may have at most 3 zeros on R. For w = wc, (5)
implies that hα,β;wc has three distinct zeros at θ ∈ {0, θ0, 2θ0}. This implies that h′α,β;wc

(θ0) > 0
and that there exists θ1 < θ0 < θ2 such that h′α,β;wc

(θ1) = h′α,β;wc
(θ2) = 0 and h′α,β;wc

is strictly
positive on (θ1, θ2) and strictly negative on (−∞, θ1) ∪ (θ2,+∞) because of Lemma 2.4. Let us
assume that θ0 > 0 (the case θ0 < 0 is similar but the set of zeros {0, θ0, 2θ0} is ordered in the
opposite way) then variations of hα,β;wc imply that 0 < θ1 < θ0 < θ2 < 2θ0 and thus that hα,β;wc is
strictly positive on (−∞, 0) ∪ (θ0, 2θ0) and strictly negative on (0, θ0) ∪ (2θ0,+∞). Hence fα,β;wc

is strictly increasing on (−∞, 0) ∪ (θ0, 2θ0) and strictly decreasing on (0, θ0) ∪ (2θ0,+∞). Since,
fα,β;wc(2θ0) = fα,β;wc(0) = 0, we conclude that fα,β;wc is non-positive and hence that inequality (4)
holds for w = wc.

Let us now prove that wc is optimal. Indeed, if we take by contradiction that w < wc, then
fα,β(2θ0) = 0 while pα,β;w(2θ0) = 4wθ20 + cα,βθ0 < 4wcθ

2
0 + cα,βθ0 = 0. Therefore inequality (4) is

not realized in a neighborhood of 2θ0. So wc is optimal.

Case α and β finite, α = −β. In this case, we have c−β,β = 0 and θ0 = 0 = 2θ0. Moreover, the
two curves are always tangent at θ = 0 for any value of w:

f−β,β(0) = 0 = p−β,β;w(0) and f ′
α,β(0) = 0 = p′α,β;w(0). (6)

Consider wc = − βϕ(β)
2Φ(β)−1 and let us verify that it is a variance proxy. In this case, the two

curves are tangent at θ = 0 but the second derivatives are also the same:

f ′′
α,β(0) = − 2βϕ(β)

2Φ(β)− 1
= 2wc = p′′α,β;wc

(0). (7)

Let us define fα,β;w := fα,β − pα,β;w and hα,β;w := hα,β − p′α,β;w as in the previous case. From
Lemma 2.4, h′α,β;wc

is strictly increasing on (−∞, 0) and strictly decreasing on (0,+∞). It achieves
its maximum at θ = 0 and h′α,β;wc

(0) = 0 from (7). Thus h′α,β;wc
is strictly negative on R \ {0} and

hα,β;wc is a strictly decreasing function vanishing at θ = 0. Hence fα,β;wc is strictly increasing on
R≤0 and strictly decreasing on R≥0. Its maximum is thus achieved at θ = 0 and is null from (6).
Thus, it remains negative on R and we conclude that inequality (4) holds for w = wc.

Let us now prove that wc is optimal. Indeed, if we take by contradiction that w < wc, then
the two curves are still tangent at θ = 0 from (6) but the second derivatives satisfy f ′′

α,β(0) =

− 2βϕ(β)
2Φ(β)−1 = 2wc > 2w = p′′α,β;w(0). Hence the parabola pα,β;w is locally below the function fα,β so

that inequality (4) is not realized in a neighborhood of θ = 0. So wc is optimal. In the end, using
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the fact that s2 = 2w + 1, we obtain that s2c := 2wc + 1 is the optimal variance proxy.

Case α = −∞ and/or β = +∞. Note first that the case when β = −α = +∞ boils down to not
truncating the original standard Gaussian, which trivially implies strict sub-Gaussianity, while the
case α finite and β = +∞ is equivalent to the α = −∞ and β finite by symmetry. Let us thus
focus on the latter. Most of the results proved for arbitrary finite values of α extend by taking the
limit α → −∞. In particular, h−∞,β is a strictly concave function on R. Moreover, one can take
the limit α → −∞ in (4) since all quantities, including wc(α), are continuous functions of α. This
provides that s = 1 is a variance proxy (i.e. w = 0) for the truncated Gaussian on (−∞, β). Let
us now prove that this value is optimal. We observe that for w < 0 we have:

f−∞,β;w(θ) := f−∞,β(θ)− p−∞,β;w(θ) = ln

(
Φ(β − θ)

Φ(β)

)
− wθ2 − c−∞,βθ

θ→−∞→ +∞, (8)

so that (4) is obviously not verified in a neighborhood of −∞. Hence s = 1 is the optimal variance
proxy when α = −∞. Similarly, s = 1 is the optimal variance proxy for β = +∞. This concludes
the proof of Theorem 2.2.

3 Truncated exponential random variables

This section considers the truncated version of the classical exponential distribution. Let X ∼
Exp(λ) be an exponential random variable with rate λ (thus with mean 1/λ), and let XT denote
the truncation of X along the interval (a, b) with 0 ≤ a < b ≤ +∞ (recall that the untruncated
version is not sub-Gaussian). Its density, mean, and variance are of the form:

fXT
(t) = λ

e−λt

e−λa − e−λb
1(a,b)(t),

E[XT] =
1

λ
+

beλa − aeλb

eλa − eλb
=

1

λ
+

ae−λa − be−λb

e−λa − e−λb
,

Var[XT] =
1

λ2
− (b− a)2eλ(a+b)

(eλb − eλa)
2 .

It is easy to see that b must be finite in order for XT to be sub-Gaussian. Indeed, we have:

E[exp(θ(XT − E[XT]))]
∣∣
θ=λ

=
λ(b− a)e−λE[XT]

e−λa − e−λb

λ→+∞∼ eλ(a−E[XT])λb, (9)

so that the inequality required in Definition 1.1 at θ = λ cannot be realized for any s2 ≥ 0 when
b → +∞.

Theorem 3.1. Let XT be an exponential variable with scale λ truncated along the interval (a, b)
with 0 ≤ a < b < ∞. Then its optimal variance proxy is given by:

∥XT∥2vp =
(b− a)

(
eλb + eλa

)
2λ (eλb − eλa)

− 1

λ2
.

In particular, XT is never strictly sub-Gaussian.

Similarly as in the Gaussian case, in order to prove Theorem 3.1 we restrict ourselves to the
case of a standard exponential random variable Y ∼ Exp(1). Indeed, let Y ∼ Exp(1) and YT be
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Figure 3: Illustration of Theorem 3.1 and Theorem 3.2. The top panel represents the
variance (black curve) and variance proxy (orange curve) of truncated standard exponential random
variables on intervals (α, β) with a fixed value of α = 1/2 and varying values for β ∈ {2, 4} (in
violet and blue). The corresponding distributions are depicted on the bottom panel. Note that
truncated standard exponential random variables are never strictly sub-Gaussian (the black and
orange curves on the top panel never coincide).

its truncation on [α, β] with 0 ≤ α < β < +∞, then defining X = Y
λ , (a, b) =

(
α
λ ,

β
λ

)
and XT the

truncation of X on [a, b], we have that XT = YT
λ . Thus, we get:

E
[
exp
(
θ(XT − E[XT]))

]
= E

[
exp

(
θ

λ
(YT − E[YT])

)]
, ∀ θ ∈ R,

from where it follows that λ2∥XT∥2vp = ∥YT∥2vp. Hence an equivalent formulation is:

Theorem 3.2. Let YT be an exponential variable with mean 1 truncated along the interval (α, β)
with 0 ≤ α < β < +∞. Then its variance proxy is given by:

∥YT∥2vp =
(β − α)

(
eα + eβ

)
2 (eβ − eα)

− 1.

In particular, YT is never strictly sub-Gaussian.

As discussed above, the exponential random variable obtained with β = +∞ and any α is not
sub-Gaussian. As a result, the variance proxy given in Theorem 3.2 needs to compensate for this
lack of sub-Gaussianity by diverging to +∞ as β → +∞. More specifically, we have that ∥YT∥2vp
is equivalent to β/2 as β → +∞, for fixed α. Theorem 3.1 and Theorem 3.2 are illustrated in
Figure 3.

The proof of Theorem 3.2 relies on a direct study of the difference

gα,β,s(θ) := E[exp(θ(YT − E[YT]))]− exp

(
s2θ2

2

)
. (10)
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The most important step is to verify that the optimal variance proxy is characterized by the
unique pair (θc, ∥YT∥vp) that solves the following system of equations:

gα,β,∥YT∥vp(θc) = 0 and g′α,β,∥YT∥vp(θc) = 0 with sinf(α, β) < ∥YT∥vp ≤ s1(α, β) and θc ̸= 0, (11)

where:

gα,β,s(θ) =
e

1
2
s2θ2

eβ − eα
Gα,β,s(θ),

Gα,β,s(θ) = eα − eβ +
1

θ − 1

(
e−

1
2
s2θ2+(β−E[YT])θ+α − e−

1
2
s2θ2+(α−E[YT])θ+β

)
,

sinf(α, β) :=

√
1− (β − α)2eα+β

(eβ − eα)
2 , s1(α, β) :=

√
(β − α)2(β − E[YT] + 2)− δα,β

(β − α)2 + 12
,

δα,β = 2(β − α)
(
−3E[YT]2 + (6β − (β − α)2)E[YT] + β3 − 2αβ2 + α2β + α2 − 2αβ − 2β2

) 1
2 .
(12)

Furthermore, by uniqueness and observing that:

θc = 2 , ∥YT∥2vp =
(β − α+ 2)eα + (β − α− 2)eβ

2(eβ − eα)

is a solution of (11) we conclude the computation of ∥YT∥2vp . Eventually, the statement that
YT is never strictly sub-Gaussian follows from a direct analysis of the difference between ∥YT∥2vp
and Var[YT] that is detailed in Appendix B.1.

Proof of Theorem 3.2. We will prove that ∥YT∥2vp is the optimal variance proxy if and only if it is
the solution to (11) and that such solution is unique. First note that gα,β,s and Gα,β,s have the
same sign and that they are smooth functions on R1. Clearly s2 is a variance proxy if Gα,β,s(θ) ≤ 0
for all θ ∈ R. In particular, we have:

gα,β,s(0) = 0 , g′α,β,s(0) = 0 , ∀s > 0,

Gα,β,s(0) = G′
α,β,s(0) = 0 , lim

θ→±∞
Gα,β,s(θ) = eα − eβ < 0 (13)

Thus, another necessary condition for s2 to be a variance proxy is that G′′
α,β,s(0) ≤ 0, i.e., we

get the claimed lower bound for the optimal variance proxy:

∥YT∥vp ≥ sinf(α, β) :=

√
1− (β − α)2eα+β

(eβ − eα)
2 . (14)

In the following, we shall thus assume that s ≥ sinf(α, β). A simple computation yields that
G′

α,β,s is given by

G′
α,β,s(θ) =

1

(θ − 1)2
eαθ+βe−

1
2
s2θ2−E[YT]θhα,β,s(θ), (15)

1Although the function gα,β,s defined in Equation (10) itself is undefined at θ = 1, setting it equal to −es
2/2 makes

it smooth. In the proof of Theorem 3.2, we may have to avoid θ = 1 at some places. Still, it is obvious by continuity
of gα,β,s that the inequality of Definition 1.1 extends at θ = 1 if it is proved valid in a neighborhood of this point.
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where:

hα,β,s(θ) :=
(
−s2θ2 + (s2 + β − E[YT])θ + E[YT]− β − 1

)
e(θ−1)(β−α)

+s2θ2 − (s2 + α− E[YT])θ − E[YT] + α+ 1

h′′′α,β,s(θ) =
e−(θ−1)(β−α)

(β − α)
Pα,β,s(θ),

with:

Pα,β,s(θ) := Aα,β,sθ
2 +Bα,β,sθ + Cα,β,s,

Aα,β,s := −s2(β − α)2,

Bα,β,s := (α− β)(α− β + 6)s2 + (β − α)2(β − E[YT]),
Cα,β,s := 3(β − α− 2)s2 + (β − α)

(
(β − α− 3)E[YT] + αβ − β2 + α+ 2β

)
.

The discriminant of the second-degree polynomial Pα,β,s is crucial in establishing the previously
mentioned characterization of the optimal variance proxy, as shown in Lemma 3.3. It is given by:

∆α,β,s :=B2
α,β,s − 4Aα,β,sCα,β,s

=(β − α)2
(
(β − α)2 + 12)s4 − 2(β − α)2(β − E[YT] + 2)s2 + (β − α)2(β − E[YT])2

)
.

Lemma 3.3. If ∆α,β,s ≤ 0, then s2 is always a variance proxy because Gα,β,s has a unique maximum
at θ = 0 which is vanishing. On the contrary, if ∆α,β,s > 0 then Gα,β,s has exactly two local
maximums. One at θ = 0 which is vanishing and also another one denoted by θc(α, β, s) which is
nonzero.

Proof of Lemma 3.3. For the proof we will need the following immediate results:

lim
θ→−∞

h′′α,β,s(θ) = 2s2 > 0, lim
θ→+∞

h′′α,β,s(θ) = −∞,

lim
θ→±∞

h′α,β,s(θ) = −∞, h′α,β,s(1) = 0,

lim
θ→−∞

hα,β,s(θ) = +∞, hα,β,s(1) = 0,

lim
θ→+∞

hα,β,s(θ) = −∞. (16)

Case ∆α,β,s ≤ 0. Let us assume that ∆α,β,s ≤ 0. Since Aα,β,s < 0, we get that h′′′α,β,s is a strictly
negative function on R except at one point where it vanishes when ∆α,β,s = 0. This implies that
h′′α,β,s is a strictly decreasing function on R. From the first two equations of (16), we conclude that
there exists a unique value θ1 ∈ R such that h′′α,β,s(θ1) = 0. Moreover, h′′α,β,s is strictly positive
on (−∞, θ1) and strictly negative on (θ1,+∞). Thus, h′α,β,s is a strictly increasing function on
(−∞, θ1) and a strictly decreasing function on (θ1,+∞). Since we know that h′α,β,s(1) = 0 and
lim

θ→±∞
h′α,β,s(θ) = −∞, we conclude that h′α,β,s may have at most two zeros. We have two subcases:

• h′α,β,s has a double zero at θ1 = 1. In this case, from the limit at infinity given by (16), h′α,β,s
is strictly negative on R \ {1} and thus hα,β,s is a strictly decreasing function on R. From
(16), we have hα,β,s(1) = 0 so that it implies that hα,β,s is strictly positive on (−∞, 1) and
strictly negative on (1,+∞) and so is G′

α,β,s from (15). But this is a contradiction to the fact
that G′

α,β,s(0) = 0 in (13) so that this subcase may be discarded.
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• h′α,β,s has two distinct zeros, i.e. there exists a unique θ2 ̸= 1 such that h′α,β,s(θ2) = 0.

Let us denote θ̃1 = min(1, θ1) and θ̃2 = max(1, θ2). Then h′α,β,s is strictly negative on

(−∞, θ̃1) ∪ (θ̃2,+∞) and strictly positive on (θ̃1, θ̃2). Thus, hα,β,s is strictly decreasing on
(−∞, θ̃1), strictly increasing on (θ̃1, θ̃2) and strictly decreasing on (θ̃2,+∞). But from (16)
we have hα,β,s(1) = 0 so that hα,β,s has a local extremum at θ = 1 that is null. Hence
hα,β,s has constant sign locally around θ = 1. Thus, there exists a unique value θ3 ̸= 1 such
that hα,β,s(θ3) = 0. Moreover, hα,β,s is strictly positive on (−∞, θ3) and strictly negative on
(θ3,+∞) and so is G′

α,β,s from (15). However, from (13) and the fact that s ≥ sinf(α, β), we
know that θ = 0 is a local maximum of Gα,β,s so that we necessarily have θ3 = 0. Hence
Gα,β,s achieves a unique maximum at θ = 0 and this maximum is null from (13) so that we
conclude that Gα,β,s is negative on R, i.e. that s2 is a variance proxy.

Case ∆α,β,s > 0. Let us assume that ∆α,β,s > 0. We get that there exists two distinct values
θ0 ̸= θ1 such that h′′′α,β,s(θ0) = h′′′α,β,s(θ1) = 0. Moreover, since Aα,β,s < 0, we get that h′′′α,β,s is
strictly negative on (−∞, θ1) ∪ (θ2,+∞) and strictly positive on (θ1, θ2). Thus, h′′α,β,s is strictly
decreasing on (−∞, θ1), strictly increasing on (θ1, θ2) and strictly decreasing on (θ2,+∞). Since
lim

θ→−∞
h′′α,β,s(θ) > 0 and lim

θ→+∞
h′′α,β,s(θ) = −∞ we conclude that h′′α,β,s may have one or two (one

simple and one double zero) or three distinct zeros depending on the sign of h′α, β, s(θ1) and
h′α, β, s(θ2).

The case when h′′α,β,s has only one or two zeros is identical to the previous case (because in both
cases h′′α,β,s changes sign only at the unique simple zero) and we refer to its conclusion. Let us thus

assume that h′′α,β,s has three distinct zeros θ̂1 < θ0 < θ̂2 < θ1 < θ̂3. Then h′′α,β,s is strictly positive on

(−∞, θ̂1)∪ (θ̂2, θ̂3) and is strictly negative on (θ̂1, θ̂2)∪ (θ̂3,+∞). Thus, since lim
θ→±∞

h′α,β,s(θ) = −∞,

h′α,β,s may have two distinct zeros or three distinct zeros (in this case, one double zero and two
simple zeros) or four distinct zeros.

Cases corresponding to two or three distinct zeros are identical to the previous case (note that
in both cases, h′α,β,s only changes sign twice) and we refer to its conclusion. Let us thus assume that
h′α,β,s has four distinct zeros. These zeros are necessarily simple zeros and from Rolle’s Theorem, we
conclude that hα,β,s may have at most 5 distinct zeros. However, we have hα,β,s(1) = h′α,β,s(1) = 0
so that θ = 1 is always a double zero of hα,β,s. Hence, hα,β,s may only change sign at most thrice.
However since lim

θ→−∞
hα,β,s(θ) = ∞ and lim

θ→+∞
hα,β,s(θ) = −∞, it cannot change sign twice so that

hα,β,s may only change sign at one or three distinct locations and so is G′
α,β,s from (15).

The case when hα,β,s changes sign once is identical to the previous one and we refer it its
conclusion. Let us thus assume that G′

α,β,s changes sign at three distinct locations denoted θ̃1 <

θ̃2 < θ̃3. From the limit at infinity, G′
α,β,s is necessarily strictly positive on (−∞, θ̃1) ∪ (θ̃2, θ̃3) and

strictly negative on (θ̃1, θ̃2)∪(θ̃3,+∞). This implies thatGα,β,s is strictly increasing on (−∞, θ̃1) and
then strictly decreasing on (θ̃1, θ̃2), then strictly increasing on (θ̃2, θ̃3) and finally strictly decreasing
(θ̃3,+∞). Hence, Gα,β,s has two local maxima and one local minimum. However, from (13), we
know that θ = 0 is a local extremum of Gα,β,s and from (14) we have assumed s ≥ sinf(α, β) so
that G′′

α,β,s(0) < 0. Hence θ = 0 is necessarily a local maximum of Gα,β,s and its value is null from
(13). Hence we conclude that Gα,β,s has a vanishing local maximum at θ = 0, a local minimum
with a strictly negative value, and a second local maximum at θ3 ̸= 0. The sign of this second
local maximum determines the sign of Gα,β,s and hence is equivalent to deciding if s2 is a variance
proxy. This concludes the proof of Lemma 3.3.

By the condition on ∆α,β,s, we also get the claimed upper bound of the optimal variance proxy
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from this lemma. Indeed, ∆α,β,s ≤ 0 is equivalent to have s ∈ [s1(α, β), s2(α, β)] while ∆α,β,s > 0
is equivalent to have s ∈ (0, s1(α, β)) ∪ (s2(α, β),+∞). Therefore ∥YT∥vp ≤ s1(α, β), with:

s1(α, β) :=

√
(β − α)2(β − E[YT] + 2)− δα,β

(β − α)2 + 12
, s2(α, β) :=

√
(β − α)2(β − E[YT] + 2) + δα,β

(β − α)2 + 12
,

and where δα,β was defined in (12). It is obvious that the position of the second maximum
θc(α, β, s) depends smoothly on s. Moreover, we know that the optimal variance proxy exists and
is non-zero because of (14). The previous analysis implies that for s < ∥YT∥vp we must have
∆α,β,s > 0 and the existence of θc(α, β, s) ̸= 0 with Gα,β,s(θc(α, β, s)) > 0. Thus, taking the
limit s → ∥YT∥vp with s < ∥YT∥vp implies that Gα,β,∥YT∥vp(θc(α, β, ∥YT∥vp)) = 0. Notice that

θc(α, β, ∥YT∥vp) = ±∞ is not possible because we have lim
θ→±∞

Gα,β,s(θ) = eα − eβ < 0 independent

of s. Hence we must have

Gα,β,∥YT∥vp(θc(α, β, ∥YT∥vp)) = 0.

To finish it remains to prove that θc(α, β, ∥YT∥vp) ̸= 0. Indeed, let us assume by contradiction
that θc(α, β, ∥YT∥vp) = 0. The previous analysis shows that for s < ∥YT∥vp, G′

α,β,s has two
distinct zeros inside (0, θc(α, β, s)) and thus by Rolle’s theorem that G′′

α,β,s has at least one zero
in (0, θc(α, β, s)). Thus at the limit, we would get G′′

α,β,∥YT∥vp(0) = 0, i.e. θ = 0 would be at least
a triple zero of Gα,β,∥YT∥vp . In fact, in order to remain locally negative around θ = 0, we would
necessarily have a zero of order four, i.e. G′′′

α,β,∥YT∥vp(0) = 0. Hence θ = 0 would be a zero of

order four of gα,β,∥YT∥vp . This would imply ∥YT∥vp = sinf(α, β) (triple zero using the definition of
sinf(α, β) and g′′′α,β,sinf(α,β)(0) (zero of order four). However we have:

g′′′α,α+ϵ,sinf(α,β)
(0) =

2e3ϵ − (ϵ3 + 6)e2ϵ + (6− ϵ3)eϵ − 2

(eϵ − 1)3
=

P (ϵ)

(eϵ − 1)3
.

From Lemma B.1 in Appendix B we have that g′′′α,α+ϵ,sinf(α,α+ϵ)(0) > 0 for all ϵ > 0 so that

g′′′α,β,sinf(α,β)(0) > 0 for any α < β i.e., we cannot have θc(α, β, ∥YT∥vp) = 0. We conclude that the
optimal variance proxy is characterized by the unique solution of the below system of equations,
which is coherent with the illustration of Figure 4. This concludes the proof of Theorem 3.2.

4 Future research directions

In summary, our work has identified the optimal sub-Gaussian variance proxy for truncated Gaus-
sian and truncated exponential random variables, while also delineating the conditions under which
strict sub-Gaussianity may or may not be observed in these truncated distributions.

Moving forward, there are several avenues for extending this work. Firstly, exploring additional
commonly encountered distributions beyond Gaussian and exponential would broaden the scope of
our findings. Additionally, investigating the truncation of multivariate distributions, such as the
multivariate Gaussian distribution, could provide valuable insights into more complex scenarios.

Furthermore, considering the sub-Weibull property of truncated random variables represents a
promising direction for future research (Vladimirova et al., 2020). This concept, which serves as a
generalization of the sub-Gaussian property, offers an intriguing framework for further understand-
ing the behavior of truncated distributions across various contexts.
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Figure 4: Illustration of the proof of Theorem 3.2. Function gα,β,s defined in Equation (10)
is represented with α = 1 and β = 4 and for different values of s. Non-positivity of the gα,β,s
function is equivalent to s2 being a variance proxy. In purple is the optimal variance proxy case
s2 = s2c = ∥YT∥2vp (s = sc ≈ 0.8107). Red represents s = 0.812 > sc (with s2 being a variance
proxy) and blue represents s = 0.8095 < sc (with s2 not being a variance proxy).
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A Proofs for truncated Gaussian random variables

This entire Appendix A is devoted to proving Lemma 2.4, showing that the function hα,β is strictly
concave on [θ0,+∞) for any finite α < β.

Proof of Lemma 2.4. To begin with, observe that it is sufficient to check the concavity of the
function only for the case when α = −β (i.e. θ0 := α+β

2 = 0). Indeed, suppose that h′′−β,β(θ) < 0
for all β ∈ R>0 and θ > 0. Then, this implies that h−β−α

2
,β−α

2
(θ) = hα,β(θ + θ0) is strictly concave

for θ ≥ 0, i.e. that x 7→ hα,β(x) is strictly concave for x ≥ θ0.

A.1 Some notations and preliminary results

Let us recall that we have:

Φ(x) :=

∫ x

−∞

1√
2π

e−
1
2
s2ds,

F−β,β(θ) := Φ(β − θ)− Φ(−β − θ),

f−β,β(θ) := ln

(
F−β,β(θ)

2Φ(β)− 1

)
,

F ′
−β,β(θ) = ϕ(θ + β)− ϕ(θ − β) =

1√
2π

(
e−

1
2
(θ+β)2 − e−

1
2
(θ−β)2

)
,

F ′′
−β,β(θ) =

1√
2π

(
−(β + θ)e−

1
2
(θ+β)2 + (θ − β)e−

1
2
(θ−β)2

)
,

F ′′′
−β,β(θ) =

1√
2π

(
e−

1
2
(θ+β)2

[
(β + θ)2 − 1

]
+ e−

1
2
(θ−β)2

[
1− (β − θ)2

])
,

h−β,β(θ) := f ′
−β,β(θ) =

F ′
−β,β(θ)

F−β,β(θ)
,

h′−β,β(θ) =
F−β,β(θ)F

′′
−β,β(θ)− (F ′

−β,β(θ))
2

F−β,β(θ)2
,

h′′−β,β(θ) =
(F−β,β(θ))

2F ′′′
−β,β(θ)− 3F−β,β(θ)F

′
−β,β(θ)F

′′
−β,β(θ) + 2(F ′

−β,β(θ))
3

F−β,β(θ)3
,

lim
θ→+∞

F ′
−β,β(θ) = lim

θ→+∞
F ′′
−β,β(θ) = lim

θ→+∞
F ′′′
−β,β(θ) = 0,

lim
θ→+∞

F−β,β(θ) = 0.

(A.17)

It is obvious by definition that F−β,β is strictly positive on R. It is also straightforward to obtain
the important linear relation

F ′′′
−β,β(θ) = −P ′

2(θ)F
′′
−β,β(θ)− P2(θ)F

′
−β,β(θ), (A.18)

where
P2(θ) := θ2 + 1− β2. (A.19)

In order to prove the strict concavity of h−β,β on R≥0, we shall need information on the function
F−β,β and its derivatives. Thus, we shall first prove the following lemma.

Lemma A.1. We have the following results:

• We have F ′
−β,β(θ) < 0 for any β > 0 and any θ ∈ R>0.
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• For 0 < β ≤
√
3: The function F ′′′

−β,β has only one zero on R>0 that we shall denote θ1.
Moreover, it is strictly positive on (0, θ1) and strictly negative on (θ1,+∞). Consequently, the

function F ′′
−β,β is strictly increasing on [0, θ1] from F ′′

−β,β(0) = − 2β√
2π
e−

1
2
β2

< 0 to F ′′
−β,β(θ1) >

0 and strictly decreasing on (θ1,+∞) from F ′′
−β,β(θ1) > 0 to 0. In particular F ′′

−β,β has only
one zero on R>0 denoted α1 satisfying α1 > θ1.

• For β >
√
3: The function F ′′′

−β,β has two distinct zeros on R>0 denoted θ1 < θ2 on R>0.
Moreover, it is strictly negative on (0, θ1) ∪ (θ2,+∞) and strictly positive on (θ1, θ2). Con-

sequently, the function F ′′
−β,β is decreasing on (0, θ1) from F ′′

−β,β(0) = − 2β√
2π
e−

1
2
β2

< 0 to

F ′′
−β,β(θ1) < F ′′

−β,β(0) < 0. F ′′
−β,β is then increasing on (θ1, θ2) up to F ′′

−β,β(θ2). It finally
decreases from F ′′

−β,β(θ2) to its limit 0 at θ → +∞. In particular, we must have F ′′
−β,β(θ2) > 0

and F ′′
−β,β has only one zero on R>0 denoted α1 that verifies α2 ∈ (θ1, θ2).

Proof of Lemma A.1. The first point is obvious from (A.17). Let us observe that

F ′′
−β,β(θ) =

2√
2π

exp

(
−1

2
(β2 + θ2)

)
(θ sinh(βθ)− β cosh(βθ)) . (A.20)

In particular F ′′
−β,β(0) = − 2β√

2π
exp

(
−1

2β
2
)
< 0 and lim

θ→+∞
F ′′
−β,β(θ) = 0. Let us assume by contra-

diction that F ′′′
β does not vanish on R>0. This implies that F ′′

−β,β would be a strictly monotonous
function and therefore would be a strictly increasing function because of the values of F ′′

−β,β(0) and
F ′′
−β,β(+∞). Since lim

θ→+∞
F ′′
−β,β(θ) = 0, it implies that F ′′

−β,β would be a strictly negative function

on R>0 so that F ′
−β,β would be a strictly decreasing function on R>0. This is a contradiction with

the fact that lim
θ→+∞

F ′
−β,β(θ) = 0 and F ′

−β,β is strictly negative on R>0. Therefore, we conclude that

there is at least one value of θc ∈ R>0 for which F ′′′
−β,β(θc) = 0. This point shall be used later to

determine the sign of some quantities by contradiction2. Let us now compute

F ′′′
−β,β

(
θ =

s

β

)
=

1√
2π

exp

(
−1

2

(
β2 +

s2

β2

))
e−s

((
1−

(
s

β
− β

)2
)
e2s −

(
1−

(
s

β
+ β

)2
))

.

(A.21)
Therefore, the sign and zeros of F ′′′

−β,β are equivalent to the sign and zeros of gβ(s) defined by

gβ(s) :=

(
1−

(
s

β
− β

)2
)
e2s − 1 +

(
s

β
+ β

)2

. (A.22)

We have

g′β(s) = −2(β4 − 2(s+ 1)β2 + s2 + s)

β2
e2s +

2(β2 + s)

β2
,

g′′β(s) = −2(2β4 − 4β2s− 6β2 + 2s2 + 4s+ 1)

β2
e2s +

2

β2
,

g′′′β (s) = −4(2s2 − (4β2 − 6)s+ 2β4 − 8β2 + 3)

β2
e2s.

2In fact, the reasoning implies that there exists a non-trivial interval on which F ′′′
−β,β is strictly positive.
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The discriminant of the numerator of g′′′β is given by ∆ = 4(4β2 + 3) > 0. Hence g′′′β has two
distinct zeros on R and we need to study the sign of these zeros. Let us denote

P (β) := 2β4 − 8β2 + 3 , S(β) := 4β2 − 6, (A.23)

so that the product (resp. the sum) of the two zeros of g′′′β are given by 1
2P (β) (resp.

1
2S(β)). P (β) is strictly positive on

(
0,

√
8−2

√
10

2

)
∪
(√

8+2
√
10

2 ,+∞
)

and strictly negative on(√
8−2

√
10

2 ,

√
8+2

√
10

2

)
. S(β) is strictly positive on

(√
6
2 ,+∞

)
and strictly negative on

(
0,

√
6
2

)
. We

shall also observe:

lim
s→+∞

gβ(s) = lim
s→+∞

g′β(s) = lim
s→+∞

g′′β(s) = lim
s→+∞

g′′′β (s) = −∞,

g′′′β (0) = −4P (β)

β2
,

g′′β(0) = 4(3− β2),

g′β(0) = 2(3− β2),

gβ(0) = 0.

Let us now study the following four cases.

Case β >

√
8+2

√
10

2 . Here, g′′′β has two roots on R and their product in strictly positive and their
sum is strictly positive. Thus, g′′′β has two distinct roots on R>0 denoted 0 < s1 < s2. It is strictly
negative on (0, s1) ∪ (s2,+∞) and strictly positive in (s1, s2). Therefore g′′β strictly decreases on
(0, s1) and since g′′β(0) < 0 it remains strictly negative on (0, s1). g′′β is then strictly increasing

from g′′β(s1) up to g′′β(s2). We have g′′β(s2) = 2
β2

(
e2β

2+
√

4β2+3−3(
√

4β2 + 3− 1) + 1
)
> 0. Since

g′′β diverges towards −∞ when s → +∞, we end up with fact that there exist exactly two values

(s3, s4) ∈ (R>0)
2 such that g′′β(s3) = g′′β(s4) = 0 and they satisfy s3 < s2 < s4. Moreover g′′β is

strictly positive on (s3, s4) and strictly negative on (0, s3)∪(s4,+∞). Therefore g′β strictly decreases
on (0, s3) and since g′β(0) < 0 it remains strictly negative on (0, s3). Note that we necessarily have
g′β(s4) > 0. Indeed, if g′β(s4) ≤ 0 then g′β would be strictly negative on R>0 so that gβ would
be strictly decreasing and since gβ(0) = 0 it would not vanish on R>0 which is a contradiction
(because we have proved that F ′′′

−β,β must vanish at least once). Since g′β(s4) > 0, we obtain that

there exists exactly two values (s5, s6) ∈ (R>0)
2 such that g′β(s5) = g′β(s6) = 0 and they satisfy

s3 < s5 < s4 < s6. gβ is thus strictly decreasing on (0, s5) and since gβ(0) = 0 it remains strictly
negative. Again gβ(s6) must be strictly positive otherwise gβ would not vanish and nor would F ′′′

−β,β

which is a contradiction. Therefore, the variations of gβ implies that there exists exactly two values
(s7, s8) ∈ (R>0)

2 such that gβ(s7) = gβ(s8) = 0 and they satisfy s5 < s7 < s6 < s8.

Case β ∈
(√

3,

√
8+2

√
10

2

]
. Here, g′′′β has two roots on R and their product in negative or null and

their sum is strictly positive. This means that g′′′β has exactly one root on R>0 that we shall denote
s2 > 0. g′′′β is strictly positive on (0, s2) and strictly negative on (s2,+∞). Since g′′β(0) < 0 and

g′′β(s2) = 2
β2

(
e2β

2+
√

4β2+3−3(
√
4β2 + 3− 1) + 1

)
> 0 and lim

s→+∞
g′′β(s) = −∞, we get that there

exists exactly two distinct values (s3, s4) ∈ (R>0)
2 such that g′′β(s3) = g′′β(s4) = 0 and they satisfy

s3 < s2 < s4. Moreover, g′β is strictly decreasing on (0, s3), strictly increasing on (s3, s4) and strictly
decreasing on (s4,+∞). We have g′β(0) < 0 so that g′β(s3) < 0. Similarly to the previous case,
we must have g′β(s4) > 0 otherwise gβ would not vanish on R>0 (it would be strictly decreasing
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on R>0 with gβ(0) = 0). We obtain that there exists exactly two values (s5, s6) ∈ (R>0)
2 such

that g′β(s5) = g′β(s6) = 0 and they satisfy s3 < s5 < s4 < s6. gβ is then strictly decreasing from
gβ(0) = 0 to gβ(s5) < 0. We must have gβ(s6) > 0 otherwise gβ would not vanish on R>0 (which is
a contradiction since we know that F ′′′

−β,β has at least one zero on R>0). Therefore, the variations

of gβ implies that there exists exactly two values (s7, s8) ∈ (R>0)
2 such that gβ(s7) = gβ(s8) = 0

and they satisfy s5 < s7 < s6 < s8.

Case β ∈
(√

8−2
√
10

2 ,
√
3
]
. Here, g′′′β has two roots on R and their product is strictly negative.

This means that g′′′β has exactly one root on R>0 that we shall denote s2 > 0. g′′′β is strictly positive
on (0, s2) and strictly negative on (s2,+∞). We have g′′β(0) ≥ 0 and lim

s→+∞
g′′β(s) = −∞. Thus,

since g′′β is strictly increasing and then strictly decreasing, we get that there exists exactly one value
s4 ∈ R>0 such that g′′β(s4) = 0 and it satisfies s2 < s4. Moreover, g′β is strictly increasing on (0, s4)
with g′β(0) ≥ 0. It then strictly decreases from g′β(s4) > 0 towards −∞. Hence, there exists exactly
one value s6 > s4 such that g′β(s6) = 0 and g′β is strictly positive on (0, s6) and strictly negative on
(s6,+∞). Thus, gβ is strictly increasing from gβ(0) = 0 to gβ(s6) > 0 and then strictly decreasing
towards −∞. We conclude that there exists only one value s8 on R>0 such that gβ(s8) = 0.

Case β ∈
(
0,

√
8−2

√
10

2

]
. Here, g′′′β has two roots on R, and their product is positive or null, while

their sum is strictly negative. This implies that g′′′β does not vanish on R>0 and thus is strictly
negative. g′′β is thus strictly decreasing on R>0 with g′′β(0) > 0 and g′′β(+∞) = −∞. We get that
there exists exactly one value s4 ∈ R>0 such that g′′β(s4) = 0. Moreover, g′β is strictly increasing
on (0, s4) with g′β(0) > 0. It then strictly decreases from g′β(s4) > 0 towards −∞. Hence, there
exists exactly one value s6 > s4 such that g′β(s6) = 0 and g′β is strictly positive on (0, s6) and
strictly negative on (s6,+∞). Thus, gβ is strictly increasing from gβ(0) = 0 to gβ(s6) > 0 and then
strictly decreasing towards −∞. We conclude that there exists only one value s8 on R>0 such that
gβ(s8) = 0.

Summarizing the four different cases and using θ = s
β , we conclude that for β ∈

(
0,
√
3
]
, F ′′′

−β,β

has exactly one root θ1 on R>0 and it is strictly positive on (0, θ1) and it is strictly negative on
(θ1,+∞). On the contrary, for β >

√
3, F ′′′

−β,β has exactly two distinct roots on R>0 denoted
θ1 < θ2 and it is strictly positive on (θ1, θ2) and strictly negative on (0, θ1)∪ (θ2,+∞). The rest of
the lemma is then obvious, which concludes the proof of Lemma A.1.

A.2 A sufficient condition for strict concavity

Let us first prove that for any β > 0, the function h−β,β is strictly concave in a positive neighborhood
of θ = 0. It is a straightforward computation by taking Taylor series around θ = 0 to observe that

h′′−β,β(θ)
θ→0
= −

β exp
(
−β2

2

)
(2Φ(β)− 1)2

(
6β

π
exp

(
−β2

2

)
+

2(β2 − 3)√
2π

(2Φ(β)− 1)

)
θ +O(θ2). (A.24)

The leading order is strictly negative for β ≥
√
3 because both terms are negative or null. For

β ∈ [0,
√
3) we define

f1(β) :=
6β

π(β2 − 3)
exp

(
−β2

2

)
+

2√
2π

(2Φ(β)− 1), (A.25)

whose derivative is f ′
1(β) = −

4β4 exp

(
−β2

2

)
π(β2−3)2

< 0. Therefore f1 is strictly decreasing on [0,
√
3) and

since f1(0) = 0 we get that f1 is strictly negative on [0,
√
3). This implies that the leading order of
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h′′−β,β(θ) as θ → 0 is strictly negative on R>0. In particular, we get that for any β > 0, there exists
a positive neighborhood of θ = 0 on which h−β,β is strictly concave.

Let us now reformulate the problem of strict concavity more simply. From (A.17), the equation
h′′−β,β(θ) = 0 is equivalent to

Zβ(θ) := (F−β,β(θ))
2F ′′′

−β,β(θ)− 3F−β,β(θ)F
′
−β,β(θ)F

′′
−β,β(θ) + 2(F ′

−β,β(θ))
3 = 0. (A.26)

We shall denote

aβ(θ) := F ′′′
−β,β(θ),

bβ(θ) := −3F ′
−β,β(θ)F

′′
−β,β(θ),

cβ(θ) := 2(F ′
−β,β(θ))

3,

so that
Zβ(θ) = aβ(θ)(F−β,β(θ))

2 + bβ(θ)F−β,β(θ) + cβ(θ). (A.27)

Let us observe that if we can prove that Zβ(θ) does not vanish on R>0, then it proves that h−β,β is
strictly concave on R>0. Indeed, the function Zβ(θ) is continuous in θ. Moreover, we have proved
that it is strictly negative in a positive neighborhood of θ = 0 so that if it does not vanish on
R>0, then the intermediate value theorem implies that it must remain strictly negative on R>0.
Therefore, we obtain the following sufficient condition to prove strict concavity of h−β,β on R>0.

Proposition A.1. Let β > 0. Proving that Zβ does not vanish on R>0 is a sufficient condition to
proving the strict concavity of h−β,β on R>0.

The next step is to use the fact that the r.h.s. of (A.27) may be seen as a polynomial of degree
2 in F−β,β(θ). In particular, zeros θc of Zβ are either zeros of F ′′′

β or solutions of the system

9(F ′
−β,β(θc))

2(F ′′
−β,β(θc))

2 − 8(F ′
−β,β(θc))

3F ′′′
−β,β(θc) ≥ 0,

F−β,β(θc) =
3

2

F ′
−β,β(θc)F

′′
−β,β(θc)

F ′′′
−β,β(θc)

± 1

2F ′′′
−β,β(θc)

√
9(F ′

−β,β(θc))
2(F ′′

−β,β(θc))
2 − 8(F ′

−β,β(θc))
3F ′′′

−β,β(θc)

= −
bβ(θc)

2aβ(θc)
± 1

2aβ(θc)

√
bβ(θc)2 − 4aβ(θc)cβ(θc).

(A.28)

The first inequality in (A.28) is necessary otherwise (A.26) which is polynomial of degree 2 in
F−β,β(θc) would have no real roots and thus (A.26) would not have solutions on R>0 ending the
proof. Therefore, we shall define

Tβ,±(θ) := −F−β,β(θ) +
3

2

F ′
−β,β(θ)F

′′
−β,β(θ)

F ′′′
−β,β(θ)

± 1

2F ′′′
−β,β(θ)

√
9(F ′

−β,β(θ))
2(F ′′

−β,β(θ))
2 − 8(F ′

−β,β(θ))
3F ′′′

−β,β(θ)

= −
bβ(θ)

2aβ(θ)
± 1

2aβ(θ)

√
bβ(θ)2 − 4aβ(θ)cβ(θ)− F−β,β(θ),

and we have the following proposition.
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Proposition A.2. Let β > 0. A sufficient condition to prove strict concavity of h−β,β on R>0 is
to prove that the function Sβ is strictly positive on R>0 where

Sβ(θ) := 9θ(F ′′
−β,β(θ))

5

+
(
42θ2 − 9

)
F ′
−β,β(θ)(F

′′
−β,β(θ))

4

− 15

(
β2 − 79

15
θ2 + 2

)
θ(F ′

−β,β(θ))
2(F ′′

−β,β(θ))
3

+
(
75θ4 − (42β2 + 36)θ2 − β4 + 12β2 − 3

)
(F ′

−β,β(θ))
3(F ′′

−β,β(θ))
2

+ 4

(
9θ4 −

(
10β2 +

9

2

)
θ2 + β4 +

9

2
β2 − 3

2

)
θ(F ′

−β,β(θ))
4F ′′

−β,β(θ)

+
(
7θ6 − (13β2 + 3)θ4 + (5β4 + 6β2 − 3)θ2 + (β2 − 1)3

)
(F ′

−β,β(θ))
5.

(A.29)

Proof of Proposition A.2. As explained in Proposition A.1, a sufficient condition to prove the strict
concavity of h−β,β on R>0 is to show that Zβ does not vanish on R>0. Moreover, the previous
discussion implies that zeros of Zβ are either zeros of F ′′′

−β,β or zeros of T±,β. Let us first prove that
the functions Tβ,+ and Tβ,− do not vanish on R>0 \ Rβ where Rβ is the set of zeros of F ′′′

−β,β . Let
us observe that for any θ ∈ R>0 \ Rβ:

T ′
β,±(θ) =

3F ′
−β,β(θ)F

′′
−β,β(θ)±

√
9(F ′

−β,β(θ))
2(F ′′

−β,β(θ))
2 − 8(F ′

−β,β(θ))
3F ′′′

−β,β(θ)

2F ′′′
−β,β(θ)

′

− F ′
−β,β(θ)

=
1

2
√
bβ(θ)2 − 4aβ(θ)cβ(θ)

( (
a′β(θ)bβ(θ)− aβ(θ)b

′
β(θ)− 2F ′′

−β,β(θ)
)√

bβ(θ)2 − 4aβ(θ)cβ(θ)

∓
(
bβ(θ)

2a′β(θ)− bβ(θ)aβ(θ)b
′
β(θ) + 2aβ(θ)c

′
β(θ)− 2aβ(θ)cβ(θ)a

′
β(θ)

) )
(A.30)

is only expressed in terms of F ′
−β,β and its derivatives that are classical functions. Zeros of T ′

β,±
must satisfy (taking the square of the numerator of (A.30) to remove the ± sign):

(
bβ(θ)

2a′β(θ)− bβ(θ)aβ(θ)b
′
β(θ) + 2aβ(θ)c

′
β(θ)− 2aβ(θ)cβ(θ)a

′
β(θ)

)2
−
(
a′β(θ)bβ(θ)− aβ(θ)b

′
β(θ)− 2F ′′

−β,β(θ)
)2 (

bβ(θ)
2 − 4aβ(θ)cβ(θ)

)
= 0.

Replacing F ′′′
−β,β and F

(4)
−β,β in terms of F ′

−β,β and F ′′
−β,β using (A.18) gives after a tedious compu-

tation that the r.h.s. is of the form 8F ′′′
−β,β(θ)

2F ′
−β,β(θ)Sβ(θ). Therefore zeros of T ′

β,± are among
those of Sβ. Simple asymptotic expansions around θ = 0 and θ → +∞ provide the following results:
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lim
θ→+∞

Tβ,±(θ) = 0,

Tβ,+(0) = −

(√
2π (2ϕ(β)− 1) (β2 − 3) exp

(
β2

2

)
+ 6β

)
exp

(
−β2

2

)√
2

2
√
π(β2 − 3)

,∀β ∈ R>0 \ {
√
3},

T ′
β,+(θ) = − 2β

3
√
2π

e−
1
2
β2
θ +O(θ2) , ∀β ∈ R>0 \ {

√
3},

Tβ,−(0) = −2Φ(β) + 1 +O(θ2) , ∀β ∈ R>0 \ {
√
3},

T ′
β,−(θ) = − 4β5

3
√
2π(β2 − 3)2

e−
1
2
β2
θ +O(θ2) , ∀β ∈ R>0 \ {

√
3},

T√
3,+(θ) =

3e−
3
2

√
6√

πθ2
+O(1),

T ′√
3,+

(θ) = −6e−
3
2

√
6√

πθ3
+O(θ),

T√
3,−(θ) = −2Φ(

√
3) + 1 +O(θ2),

T ′√
3,−(θ) = − 1

3
√
π
e−

3
2

√
6θ +O(θ2).

(A.31)

In particular, in all cases, we get that the functions
(
T ′
β,−, T

′
β,+

)
are always strictly negative

in a positive neighborhood of θ = 0 for any value of β > 0. Let us show that proving that Sβ

is strictly positive on R>0 is a sufficient condition to get that both functions (Tβ,−, Tβ,+) do not
vanish on R>0. Indeed, if we assume that Sβ(θ) is strictly positive on R>0 then it implies that T ′

β,±
cannot vanish. Depending on the value of β, we have three cases:

• For β <
√
3: we have that T ′

β,± is strictly negative on (0, θ1) so that Tβ,± is a strictly
decreasing function on (0, θ1). Note that Tβ,− diverges at θ1 and changes sign (because
3F ′

−β,β(θ1)F
′′
−β,β(θ1) < 0 from Lemma A.1). Moreover, from (A.31), we have Tβ,−(0) < 0.

This implies that lim
θ→θ1,−

Tβ,− = −∞ and lim
θ→θ1,+

Tβ,− = +∞. Therefore, the sign of T ′
β,− is

necessarily negative on (θ1,+∞) so that Tβ,− is strictly decreasing on (θ1,+∞). Since its
limit is zero at infinity, it remains strictly positive on (θ1,+∞). Thus, we conclude that Tβ,−
never vanishes on R>0. The situation for Tβ,+ is simpler. Indeed, Tβ,+ is a smooth function
at θ = θ1 (because 3F ′

−β,β(θ1)F
′′
−β,β(θ1) < 0 from Lemma A.1). Therefore the sign of T ′

β,+

remains constant on R>0 and thus Tβ,+ is a decreasing function on R>0. Since its limit at
infinity is null, we get that it remains strictly positive on R>0. In both cases, Tβ,± does not
vanish on R>0.

• For β =
√
3: we have that T ′√

3,± is strictly negative in (0, θ1) so that T√
3,± is a strictly

decreasing function on (0, θ1). Note that T√
3,− diverges at θ1 and changes sign (because

3F ′
−
√
3,
√
3
(θ1)F

′′
−
√
3,
√
3
(θ1) < 0 from Lemma A.1). Moreover, from (A.31), we have T√

3,−(0) <

0. This implies that lim
θ→θ1,−

T√
3,− = −∞ and lim

θ→θ1,+
T√

3,− = +∞. Therefore, the sign of T ′√
3,−

is necessarily negative on (θ1,+∞) so that T√
3,− is strictly decreasing on (θ1,+∞). Since

its limit is zero at infinity, it remains strictly positive on (θ1,+∞). Thus, we conclude that
T√

3,− never vanishes on R>0. The situation for T√
3,+ is simpler. We have from (A.31) that

T√
3,+(0) > 0 and T√

3,+ is a smooth function at θ = θ1 (because 3F
′
−
√
3,
√
3
(θ1)F

′′
−
√
3,
√
3
(θ1) < 0

22



from Lemma A.1). Therefore the sign of T ′√
3,+

remains constant on R>0 and T√
3,+ is a

decreasing function on R>0. Since its limit is null, we get that it remains strictly positive on
R>0. In both cases, T√

3,± does not vanish on R>0.

• For β >
√
3, we get that T ′

β,± is strictly negative in (0, θ1). Note that Tβ,+ is smooth
at θ2 but diverges and changes sign at θ = θ1 (because 3F ′

−β,β(θ1)F
′′
−β,β(θ1) < 0 and

3F ′
−β,β(θ2)F

′′
−β,β(θ2) > 0 from Lemma A.1). Moreover, we have from (A.31) Tβ,+(0) < 0

so that lim
θ→θ1,−

Tβ,+ = −∞ and lim
θ→θ1,+

Tβ,+ = +∞. Therefore Tβ,+ must be decreasing

on (θ1,+∞) and since its limit is 0 at infinity we conclude that it is strictly positive on
(θ1,+∞). The situation for Tβ,− is similar. It is smooth at θ1 but diverges and changes
sign at θ2 (because 3F ′

−β,β(θ1)F
′′
−β,β(θ1) < 0 and 3F ′

−β,β(θ2)F
′′
−β,β(θ2) > 0 from Lemma A.1).

We have Tβ,−(0) < 0 so that it is strictly negative on (0, θ2) and lim
θ→θ2,−

Tβ,− = −∞ and

lim
θ→θ2,+

Tβ,− = +∞. Therefore it must strictly decrease on (θ2,+∞) and since its limit is 0 at

infinity, we end up with the fact that it is strictly positive on (θ2,+∞). In both cases, Tβ,±
does not vanish on R>0.

Thus, we conclude that proving that Sβ is strictly positive on R>0 is a sufficient condition to
get that Tβ,± does not vanish on R>0 \ Rβ. Let us prove that the fact that Sβ is strictly positive
on R>0 also excludes the zeros of F ′′′

−β,β as potential zeros of Zβ. Under the assumption that Sβ is
strictly positive on R>0 we have

• For β >
√
3, F ′′′

−β,β has exactly two zeros denoted θ1 < θ2 on R>0. As explained above, Tβ,+

is a smooth function at θ2 and we have Tβ,+(θ2) = − cβ(θ2)
bβ(θ2)

− F−β,β(θ2). We have proved

above that Tβ,+ is strictly positive on (θ1,+∞) so that Tβ,+(θ2) = − cβ(θ2)
bβ(θ2)

− F−β,β(θ2) > 0.

However, if θ2 was a zero of Zβ, then we would have from (A.26) F−β,β(θ2)+
cβ(θ2)
bβ(θ2)

= 0 leading

to a contradiction. Therefore θ2 is not a zero of Zβ. Similarly, we have proved that Tβ,− is a

smooth function at θ1 and we have Tβ,−(θ1) = − cβ(θ1)
bβ(θ1)

−F−β,β(θ1). Moreover, we have proved

above that Tβ,− is strictly negative on (0, θ2) so that Tβ,−(θ1) = − cβ(θ1)
bβ(θ1)

− F−β,β(θ1) < 0.

However, if θ1 was a zero of Zβ, then we would have from (A.26) F−β,β(θ1)+
cβ(θ1)
bβ(θ1)

= 0 leading

to a contradiction. Therefore θ1 is not a zero of Zβ.

• For β ≤
√
3: F ′′′

−β,β has exactly one zero denoted θ1 on R>0. As explained above, Tβ,+

is a smooth function at θ = θ1 and it is strictly positive on R>0. In particular we have

Tβ,+(θ1) = − cβ(θ1)
bβ(θ1)

− F−β,β(θ1) > 0. However, if θ1 was a zero of Zβ, then we would have

from (A.26) F−β,β(θ1) +
cβ(θ1)
bβ(θ1)

= 0 leading to a contradiction. Therefore θ1 is not a zero of

Zβ.

This concludes the proof of Proposition A.2.

A.3 Proof of the sufficient condition

From Proposition A.2, a sufficient condition to have strict concavity of h−β,β on R>0 is to prove
that Sβ is strictly positive on R>0. In this section, we shall propose a sufficient condition to obtain
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this result. Let us first observe that:

F ′(θ) = − 2√
2π

e−
1
2
θ2− 1

2
β2

sinh(βθ),

F ′′(θ) =
2√
2π

e−
1
2
θ2− 1

2
β2

(θ sinh(βθ)− β cosh(βθ)) .

The term 2√
2π
e−

1
2
θ2− 1

2
β2

factors out of Sβ because we have homogeneous powers. Therefore, let us

thus rewrite Sβ(θ) = 2
(

2√
2π
e−

1
2
θ2− 1

2
β2
)5

S̃β(θ). We have:

S̃β(θ) = sinh(5βθ) +
(
4β6 + 4(3θ2 + 6)β4 + 12β2 − 5

)
sinh(3βθ)

+
(
−12β6 + 4(3θ2 + 18)β4 − 36β2 + 10)

)
sinh(βθ)

− 4
(
3β2 + θ2 + 6

)
β3θ cosh(3βθ)

+ 4
(
−33β2 + θ2 + 6

)
β3θ cosh(βθ).

Proving that Sβ is strictly positive on R>0 is equivalent to prove that S̃β is strictly positive on R>0.

Let us perform the following change of variables: s = βθ and define Aβ(s) := S̃β

(
s
β

)
. Since β > 0,

it is obvious that proving that S̃β is strictly positive on R>0 is equivalent to proving that Aβ is also
strictly positive on R>0. We obtain:

Aβ(s) = sinh(5s) +
(
4β6 + 24β4 + 12s2β2 + 12β2 − 5

)
sinh(3s)

+
(
−12β6 + 72β4 + 12s2β2 − 36β2 + 10

)
sinh(s)

− 4(3β4 + 6β2 + s2)s cosh(3s) + 4(−33β4 + 6β2 + s2)s cosh(s).

Let us observe that Bs(µ) := Aβ(s) is a polynomial of degree 3 in µ := β2:

Bs(µ) := Aµ2(s)

= 4 (sinh(3s)− 3 sinh(s))µ3

+ 4 (6 sinh(3s) + 18 sinh(s)− 33s cosh(s)− 3s cosh(3s))µ2

+ 4
(
3(s2 + 1) sinh(3s) + 3(s2 − 3) sinh(s) + 6s cosh(s)− 6s cosh(3s)

)
µ

+ sinh(5s)− 5 sinh(3s) + 10 sinh(s) + 4s3 cosh(s)− 4s3 cosh(3s).

Let us first notice that Bs(0) = sinh(5s) − 5 sinh(3s) + 10 sinh(s) + 4s3 cosh(s) − 4s3 cosh(3s) > 0
for any s > 0 so that Bs is strictly positive in a positive neighborhood of s = 0. Indeed, we have
the following lemma.

Lemma A.2. For any s > 0, we have

sinh(5s)− 5 sinh(3s) + 10 sinh(s) + 4s3 cosh(s)− 4s3 cosh(3s) > 0. (A.32)

Proof of Lemma A.2. One may rewrite

sinh(5s)− 5 sinh(3s) + 10 sinh(s) + 4s3 cosh(s)− 4s3 cosh(3s) = 16 sinh(s)2
(
sinh(s)3 − s3 cosh(s)

)
= 16 sinh(s)2 cosh(s)

(
sinh(s)3

cosh(s)
− s3

)
.
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Let us then define a(s) := sinh(s)3

cosh(s) − s3 for s > 0. We have

a′(s) =
2 cosh(s)4 + (−3s2 − 1) cosh(s)2 − 1

cosh(s)2
,

a′′(s) =
(4 sinh(s) cosh(s)4 − 6s cosh(s)3 + 2 sinh(s))

cosh(s)3
,

a(3)(s) =
2 sinh(s)4(4 cosh(s)2 + 3)

cosh(s)4
> 0,

so that a′′ is strictly increasing on R>0 and since a′′(0) = 0, we get that a′′ is strictly positive
on R>0. This implies that a′ is strictly increasing on R>0 and since a′(0) = 0 we end up with a′

strictly positive on R>0. In the end, a is strictly increasing on R>0 and a(0) = 0 so that a is strictly
positive on R>0, ending the proof of Lemma A.2.

Then, we observe that the leading coefficient of the polynomial µ 7→ Bs(µ) is given by sinh(3s)−
3 sinh(s) and is obviously strictly positive for any s > 0. We want to prove that for any s > 0,
µ 7→ Bs(µ) is a strictly positive function on R>0. We have:

B′
s(µ) = 12

[
(sinh(3s)− 3 sinh(s))µ2

+ 2 (2 sinh(3s) + 6 sinh(s)− 11s cosh(s)− s cosh(3s))µ

+ (s2 + 1) sinh(3s) + (s2 − 3) sinh(s) + 2s cosh(s)− 2s cosh(3s)
]
.

The discriminant 144∆(s) of this polynomial of degree two is given by ∆(s) := −64 cosh(s)∆̃(s)
with

∆̃(s) = −3 cosh(s)5 + 2s sinh(s) cosh(s)4 − 6s2 cosh(s)3 + 14s sinh(s) cosh(s)2

− 3 cosh(s)3 − 3s2 cosh(s) + 2s sinh(s) + 6 cosh(s).

Let us assume that ∆̃ is strictly positive on R>0 so that ∆(s) is strictly negative, i.e. B′
s does not

vanish on R and thus remains strictly positive on R>0 (because its leading coefficient is strictly
positive). Since we have proved in Lemma A.2 that Bs(0) > 0, we obtain that Bs is strictly
positive on R>0 which is equivalent to say that for any (β, s) ∈ R>0 × R>0: Aβ(s) is strictly
positive. Therefore, a sufficient condition to obtain that Sβ is strictly positive on R>0 is that ∆̃ is
strictly positive on R>0. In order to prove this sufficient condition, let us observe that

∆̃′(s) = sinh(s)
[
10s cosh(s)3 sinh(s)− 13 cosh(s)4 − 18s2 cosh(s)2

+ 32s sinh(s) cosh(s) + 5 cosh(s)2 − 3s2 + 8
]

:= sinh(s)Q(s),

with

Q′(s) = 2 sinh(s)
[
20s sinh(s) cosh(s)2 − 21 cosh(s)3 − 18s2 cosh(s) + 19s sinh(s) + 21 cosh(s)

]
:= 2 sinh(s)R(s),

with

R(s) := 20s sinh(s) cosh(s)2 − 21 cosh(s)3 − 18s2 cosh(s) + 19s sinh(s) + 21 cosh(s).

25



Let us assume that R(s) > 0 for any s > 0, then Q is a strictly increasing function on R>0 with
Q(0) = 0 so that it is strictly positive on R>0. This implies that ∆̃ is a strictly increasing function
on R>0 so that since ∆̃(0) = 0 we get that ∆̃ is also a strictly positive function on R>0. Therefore,
we have the following result.

Proposition A.3. Let β > 0. A sufficient condition to obtain that Sβ is strictly positive on R>0 is
to prove that s 7→ R(s) := 20s sinh(s) cosh(s)2−21 cosh(s)3−18s2 cosh(s)+19s sinh(s)+21 cosh(s)
is strictly positive on R>0.

Finally we may prove this sufficient condition using the following proposition.

Proposition A.4. Let β > 0. The function s 7→ R(s) := 20s sinh(s) cosh(s)2 − 21 cosh(s)3 −
18s2 cosh(s) + 19s sinh(s) + 21 cosh(s) is strictly positive on R>0.

Proof of Proposition A.4. Let us first rewrite:

R(s) = 20s sinh(s) cosh(s)2 − 21 cosh(s)3 − 18s2 cosh(s) + 19s sinh(s) + 21 cosh(s)

= 20s sinh(s) cosh(s)2 − 21 cosh(s) sinh(s)2 − 18s2 cosh(s) + 19s sinh(s)

= −
(
18 cosh(s)s2 − (20 sinh(s) cosh(s)2 + 19 sinh(s))s+ 21 cosh(s) sinh(s)2

)
,

and observe that

R(s) =
64

15
s6 +O(s7),

so that R is strictly positive in a positive neighborhood of zero. Moreover, equation R(s) = 0 may
be seen as a polynomial of degree two in s. In other words R(s) = 0 with s > 0 is equivalent to

s =
20 sinh(s) cosh(s)2 + 19 sinh(s)

36 cosh(s)
± sinh(s)

36 cosh(s)

√
400 cosh(s)4 − 752 cosh(s)2 + 361. (A.33)

Let us define

R±(s) := s− 20 sinh(s) cosh(s)2 + 19 sinh(s)

36 cosh(s)
−± sinh(s)

36 cosh(s)

√
400 cosh(s)4 − 752 cosh(s)2 + 361.

Note in particular that

R+(s) =
64

45
s5 +O(s6),

R−(s) = −1

6
s− 7

18
s3 +O(s4).

(A.34)

Moreover, we have

R′
±(s) =

(−40 cosh(s)4 + 56 cosh(s)2 − 19)
√

400 cosh(s)4 − 752 cosh(s)2 + 361± (800 cosh(s)6 − 1152 cosh(s)4 + 361)

36 cosh(s)2
√

400 cosh(s)4 − 752 cosh(s)2 + 361
.

Therefore, zeros of R′
± must satisfy(

−40 cosh(s)4 + 56 cosh(s)2 − 19
)2 (

400 cosh(s)4 − 752 cosh(s)2 + 361
)
−

(
800 cosh(s)6 − 1152 cosh(s)4 + 361

)2
= 0,

which is equivalent to

−576 sinh(s)4 cosh(s)2
(
2000 cosh(s)4 − 3781 cosh(s)2 + 1805

)
= 0.
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Since the discriminant of 2000X2−3781X+1805 is negative (equal to −144039), we conclude that
R′

± does not vanish on R>0 and thus has a constant sign on R>0. In particular, from (A.34), we
get that R′

+ is strictly positive on R>0 so that R+ is strictly increasing and since R+(0) = 0 we
conclude that R+ is strictly positive on R>0. Similarly, from (A.34) R′

− is strictly negative on R>0

so that R− is strictly decreasing and since R−(0) = 0 we conclude that R− is strictly negative on
R>0. In both cases, the function R± do not vanish on R>0 so that (A.33) cannot be satisfied on
R>0 and eventually R does not vanish on R>0. Since we have shown that it is strictly positive in
a positive neighborhood of zero and since it is a smooth function, we conclude that function R is
strictly positive on R>0. This concludes the proof of Proposition A.4.

Finally, we conclude from Proposition A.3 and Proposition A.4 that for any β > 0, Sβ is a
strictly positive function on R>0 so that from Proposition A.2 we obtain that h−β,β is a strictly
concave function on R>0. This concludes the proof of Lemma 2.4 stated in the main part of the
paper.

B Proofs for truncated exponential random variables

Lemma B.1. For any ϵ > 0, we have

P (ϵ) := 2e3ϵ − (ϵ3 + 6)e2ϵ + (6− ϵ3)eϵ − 2 > 0.

Proof of Lemma B.1. We have:

P ′(ϵ) = e3ϵ
(
(6− 3ϵ2 − ϵ3)e−2ϵ − (12 + 3ϵ2 + 2ϵ3)e−ϵ + 6

)
:= e3ϵQ(ϵ),

Q′(ϵ) = e−ϵ
[(
2ϵ3 + 3ϵ2 − 6ϵ− 12

)
e−ϵ + 2ϵ3 − 3ϵ2 − 6ϵ+ 12

]
:= e−ϵR(ϵ).

It is then straightforward to compute R(4)(ϵ) = e−ϵϵ(2ϵ2 − 21ϵ + 42) whose roots are ϵ± = 21
4 ±√

1054. Thus R′′′ is strictly increasing on (0, ϵ−) and then strictly decreasing on (ϵ−, ϵ+) and finally
increasing on (ϵ+,+∞). Since R′′′(0) = 0 and R′′′(ϵ+) > 0 we conclude that R′′′ is strictly positive
on (0,+∞). Thus, R′′ is strictly increasing on R≥0 and since R′′(0) = 0 it is strictly positive on
R>0. Hence R′ is strictly increasing on R≥0 and since R′(0) = 0 it is strictly positive on R>0.
Eventually, R is strictly increasing on R≥0 and since R(0) = 0, we get that R is strictly positive on
R>0 so that Q is strictly increasing on R≥0. In the end, since Q(0) = 0, Q is strictly positive on
R>0 so that P is strictly increasing on R≥0. Since P (0) = 0, we conclude that P is strictly positive
on R>0, which concludes the proof of Lemma B.1.

B.1 Proving that the truncated exponential is never strictly sub-Gaussian

Let us study the sign of

∥YT∥2vp −Var[YT] =
eα+β

2 (eβ − eα)

(
(α− β − 4)eα−β + (β − α− 4)eβ−α + 2(β − α)2 + 8

)
.

Observe that the last term is only a function of ϵ = β − α > 0. Thus, the sign of ∥YT∥2vp −Var[YT]
is the same as the sign of the function K on R>0 defined by

K(ϵ) := (ϵ− 4)eϵ − (ϵ+ 4)e−ϵ + 2ϵ2 + 8 = 2ϵ sinh ϵ− 8 cosh ϵ+ 2ϵ2 + 8.
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We have:

K ′(ϵ) = 2ϵ cosh ϵ− 6 sinh ϵ+ 4ϵ,

K ′′(ϵ) = 2ϵ sinh ϵ− 4 cosh ϵ+ 4,

K ′′′(ϵ) = 2 (ϵ cosh ϵ− sinh ϵ) .

It is obvious that K ′′′ is strictly positive on R>0. Since K ′′(0) = 0, K ′(0) = 0 and K(0) = 0 we
get successively that K ′′, K ′ and K are strictly increasing and strictly positive on R>0. Thus, we
conclude that for all α < β, we have ∥YT∥2vp > Var[YT] so that the truncated exponential is never
strictly sub-Gaussian.
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