Behavior of the Discontinuous Galerkin Method for Compressible Flows at Low Mach Number on Triangles and Tetrahedrons - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Scientific Computing Année : 2024

Behavior of the Discontinuous Galerkin Method for Compressible Flows at Low Mach Number on Triangles and Tetrahedrons

Résumé

In this article, we are interested in the behavior of discontinuous Galerkin schemes for compressible flows in the low Mach number limit. We prove that for any numerical flux conserving exactly contacts (e.g., exact Godunov, Roe, HLLC), the numerical scheme is accurate at low Mach number flows on simplicial meshes, which is an extension to higher order of the result proven in [H. Guillard, Comput. Fluids, 38 (2009), pp. 1969--1972]. When the mesh is not simplicial, or when the mesh is simplicial but the numerical flux does not conserve contacts (e.g., Lax-Friedrich, HLL), the scheme is numerically proven to be less accurate in the low Mach number limit.
Fichier principal
Vignette du fichier
DGTriangles.pdf (6.45 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04503238 , version 1 (13-03-2024)

Identifiants

Citer

Jonathan Jung, Vincent Perrier. Behavior of the Discontinuous Galerkin Method for Compressible Flows at Low Mach Number on Triangles and Tetrahedrons. SIAM Journal on Scientific Computing, 2024, 46 (1), pp.A452-A482. ⟨10.1137/23M154755X⟩. ⟨hal-04503238⟩
89 Consultations
99 Téléchargements

Altmetric

Partager

More