Systolic inequalities for the number of vertices
Résumé
Inspired by the classical Riemannian systolic inequality of Gromov, we present a combinatorial analogue providing a lower bound on the number of vertices of a simplicial complex in terms of its edge-path systole. Similarly to the Riemannian case, where the inequality holds under a topological assumption of “essentiality”, our proofs rely on a combinatorial analogue of that assumption. Under a stronger assumption, expressed in terms of cohomology cup-length, we improve our results quantitatively. We also illustrate our methods in the continuous setting, generalizing and improving quantitatively the Minkowski principle of Balacheff and Karam; a corollary of this result is the extension of the Guth–Nakamura cup-length systolic bound from manifolds to complexes.