Change of deep subduction seismicity after a large megathrust earthquake
Résumé
Subduction zones are home to the world’s largest and deepest earthquakes. Recently, large-scale interactions between shallow (0-60 km) and intermediate (80-150 km) seismicity have been evidenced during the interseismic period but also before and after megathrust earthquakes along with large-scale changes in surface motion. Large-scale deformation transients following major earthquakes have also been observed possibly due to a post-seismic change in slab pull or to a bending/unbending of the plates, which suggests the existence of interactions between the deep and shallow parts of the slab. In this study, we analyze the spatio-temporal variations of the declustered seismicity in Japan from 2000 to 2011/3/11 and from 2011/3/11 to 2013/3/11. We observe that the background rate of the intermediate to deep (150-450 km) seismicity underwent a deceleration of 55% south of the rupture zone and an acceleration of 30% north of it after the Tohoku-oki earthquake, consistent with the GPS surface displacements. This shows how a megathrust earthquake can affect the stress state of the slab over a 2500 km lateral range and a large depth range, demonstrating that earthquakes interact at a much greater scale than the surrounding rupture zone usually considered.
Domaines
Sciences de la TerreOrigine | Fichiers éditeurs autorisés sur une archive ouverte |
---|