Nanofeather ruthenium nitride electrodes for electrochemical capacitors - Archive ouverte HAL
Journal Articles Nature Materials Year : 2024

Nanofeather ruthenium nitride electrodes for electrochemical capacitors

Abstract

Fast charging is a critical concern for the next generation of electrochemical energy storage devices, driving extensive research on new electrode materials for electrochemical capacitors and micro-supercapacitors. Here we introduce a significant advance in producing thick ruthenium nitride pseudocapacitive films fabricated using a sputter deposition method. These films deliver over 0.8 F cm–2 (~500 F cm–3) with a time constant below 6 s. By utilizing an original electrochemical oxidation process, the volumetric capacitance doubles (1,200 F cm–3) without sacrificing cycling stability. This enables an extended operating potential window up to 0.85 V versus Hg/HgO, resulting in a boost to 3.2 F cm–2 (3,200 F cm–3). Operando X-ray absorption spectroscopy and transmission electron microscopy analyses reveal novel insights into the electrochemical oxidation process. The charge storage mechanism takes advantage of the high electrical conductivity and the morphology of cubic ruthenium nitride and Ru phases in the feather-like core, leading to high electrical conductivity in combination with high capacity. Accordingly, we have developed an analysis that relates capacity to time constant as a means of identifying materials capable of retaining high capacity at high charge/discharge rates.

Keywords

Fichier principal
Vignette du fichier
RuN paper_revised _final_Jan 2024_short.pdf (412.88 Ko) Télécharger le fichier
fig1-5.pdf (1.4 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04495652 , version 1 (23-04-2024)

Identifiers

Cite

Khac Huy Dinh, Grace Whang, Antonella Iadecola, Houssine Makhlouf, Antoine Barnabé, et al.. Nanofeather ruthenium nitride electrodes for electrochemical capacitors. Nature Materials, 2024, Nature Materials, ⟨10.1038/s41563-024-01816-0⟩. ⟨hal-04495652⟩
143 View
57 Download

Altmetric

Share

More