Integrating wet stirred-bead milling for Tetraselmis suecica biorefinery: Operating parameters influence and specific energy efficiency - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Bioresource Technology Année : 2024

Integrating wet stirred-bead milling for Tetraselmis suecica biorefinery: Operating parameters influence and specific energy efficiency

Résumé

Stirred bead milling proved to be an efficient cell destruction technique in a biorefinery unit for the extraction of over 95 % of proteins and 60 % of carbohydrates from the green marine microalga Tetraselmis suecica. Optimum conditions, expressed in terms of metabolite yield and energy consumption, were found for average values of bead size and agitator rotation speed. The higher the microalgae concentration, up to 100 g.L−1, which is adequate for biofilm algae growth in an industrial unit, the more efficient the cell destruction process. Cell destruction rates and metabolite extraction yields are similar in pendular and recycling modes, but the pendular configuration reduces the residence time of the suspension in the grinding chamber, which is less costly. With regard to the cell destruction mechanism, it was concluded that bead shocks first damage cells by permeabilizing them, and that after a longer period, all cells are shredded and destroyed, forming elongated debris.
Fichier non déposé

Dates et versions

hal-04490301 , version 1 (05-03-2024)

Identifiants

Citer

Pauline Delran, Laurie Barthe, Jérôme Peydecastaing, Pierre Yves Pontalier, Freddy Guihéneuf, et al.. Integrating wet stirred-bead milling for Tetraselmis suecica biorefinery: Operating parameters influence and specific energy efficiency. Bioresource Technology, 2024, 394, pp.130181. ⟨10.1016/j.biortech.2023.130181⟩. ⟨hal-04490301⟩
42 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More