The Santa Barbara Binary-Disk Code Comparison - Archive ouverte HAL
Article Dans Une Revue The Astrophysical Journal Année : 2024

The Santa Barbara Binary-Disk Code Comparison

Paul C Duffell
  • Fonction : Auteur
Alexander J Dittmann
  • Fonction : Auteur
Daniel J d'Orazio
  • Fonction : Auteur
Alessia Franchini
  • Fonction : Auteur
Kaitlin M Kratter
  • Fonction : Auteur
Anna B.T Penzlin
  • Fonction : Auteur
Magdalena Siwek
  • Fonction : Auteur
Christopher Tiede
  • Fonction : Auteur
Haiyang Wang
  • Fonction : Auteur
Jonathan Zrake
  • Fonction : Auteur
Adam M Dempsey
  • Fonction : Auteur
Zoltan Haiman
  • Fonction : Auteur
Alessandro Lupi
  • Fonction : Auteur
Michal Pirog
  • Fonction : Auteur
Geoffrey Ryan
  • Fonction : Auteur

Résumé

We have performed numerical calculations of a binary interacting with a gas disk, using eleven different numerical methods and a standard binary-disk setup. The goal of this study is to determine whether all codes agree on a numerically converged solution, and to determine the necessary resolution for convergence and the number of binary orbits that must be computed to reach an agreed-upon relaxed state of the binary-disk system. We find that all codes can agree on a converged solution (depending on the diagnostic being measured). The zone spacing required for most codes to reach a converged measurement of the torques applied to the binary by the disk is roughly 1% of the binary separation in the vicinity of the binary components. For our disk model to reach a relaxed state, codes must be run for at least 200 binary orbits, corresponding to about a viscous time for our parameters, $0.2 (a^2 \Omega_B /\nu)$ binary orbits, where $\nu$ is the kinematic viscosity. We did not investigate dependence on binary mass ratio, eccentricity, disk temperature, or disk viscosity; therefore, these benchmarks may act as guides towards expanding converged solutions to the wider parameter space but might need to be updated in a future study that investigates dependence on system parameters. We find the most major discrepancies between codes resulted from the dimensionality of the setup (3D vs 2D disks). Beyond this, we find good agreement in the total torque on the binary between codes, although the partition of this torque between the gravitational torque, orbital accretion torque, and spin accretion torque depends sensitively on the sink prescriptions employed. In agreement with previous studies, we find a modest difference in torques and accretion variability between 2D and 3D disk models. We find cavity precession rates to be appreciably faster in 3D than in 2D.
Fichier principal
Vignette du fichier
Duffell_2024_ApJ_970_156.pdf (2.99 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04489745 , version 1 (01-12-2024)

Licence

Identifiants

Citer

Paul C Duffell, Alexander J Dittmann, Daniel J d'Orazio, Alessia Franchini, Kaitlin M Kratter, et al.. The Santa Barbara Binary-Disk Code Comparison. The Astrophysical Journal, 2024, 970 (2), pp.156. ⟨10.3847/1538-4357/ad5a7e⟩. ⟨hal-04489745⟩
11 Consultations
0 Téléchargements

Altmetric

Partager

More