Bijective proof of a conjecture on unit interval posets - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2024

Bijective proof of a conjecture on unit interval posets

Wenjie Fang

Résumé

In a recent preprint, Matherne, Morales and Selover conjectured that two different representations of unit interval posets are related by the famous zeta map in q, t-Catalan combinatorics. This conjecture was proved recently by Gélinas, Segovia and Thomas using induction. In this short note, we provide a bijective proof of the same conjecture with a reformulation of the zeta map using left-aligned colored trees, first proposed in the study of parabolic Tamari lattices.
Fichier principal
Vignette du fichier
2212.13040.pdf (527.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04486630 , version 1 (02-03-2024)

Licence

Identifiants

Citer

Wenjie Fang. Bijective proof of a conjecture on unit interval posets. Discrete Mathematics and Theoretical Computer Science, 2024, vol. 26:2 (Combinatorics), ⟨10.46298/dmtcs.10837⟩. ⟨hal-04486630⟩
15 Consultations
19 Téléchargements

Altmetric

Partager

More