Out-of-Distribution Detection Using Deep Neural Network Latent Space Uncertainty
Résumé
As automated systems increasingly incorporate deep neural networks (DNNs) to perform safety-critical tasks, confidence representation and uncertainty estimation in DNN predictions have become useful and essential to represent DNN ignorance. Predictive uncertainty has often been used to identify samples that can lead to wrong predictions with high confidence, i.e., Out-of-Distribution (OoD) detection. However, predictive uncertainty estimation at the output of a DNN might fail for OoD detection in computer vision tasks such as semantic segmentation due to the lack of information about semantic structures and contexts. We propose using the DNN uncertainty from intermediate latent representations to overcome this problem. Our experiments show promising results in OoD detection for the semantic segmentation task.