Black-Hole-to-Halo Mass Relation From UNIONS Weak Lensing
Résumé
This letter presents, for the first time, direct constraints on the black-hole-to-halo-mass relation using weak gravitational lensing measurements. We construct type I and type II Active Galactic Nuclei (AGNs) samples from the Sloan Digital Sky Survey (SDSS), with a mean redshift of 0.4 0.1 for type I (type II) AGNs. This sample is cross-correlated with weak lensing shear from the Ultraviolet Near Infrared Northern Survey (UNIONS). We compute the excess surface mass density of the halos associated with $36,181$ AGNs from $94,308,561$ lensed galaxies and fit the halo mass in bins of black-hole mass. We find that more massive AGNs reside in more massive halos. We see no evidence of dependence on AGN type or redshift in the black-hole-to-halo-mass relationship when systematic errors in the measured black-hole masses are included. Our results are consistent with previous measurements for non-AGN galaxies. At a fixed black-hole mass, our weak-lensing halo masses are consistent with galaxy rotation curves, but significantly lower than galaxy clustering measurements. Finally, our results are broadly consistent with state-of-the-art hydro-dynamical cosmological simulations, providing a new constraint for black-hole masses in simulations.
Domaines
Astrophysique [astro-ph]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|