Regularization by denoising: Bayesian model and Langevin-within-split Gibbs sampling - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Regularization by denoising: Bayesian model and Langevin-within-split Gibbs sampling

Résumé

This paper introduces a Bayesian framework for image inversion by deriving a probabilistic counterpart to the regularization-by-denoising (RED) paradigm. It additionally implements a Monte Carlo algorithm specifically tailored for sampling from the resulting posterior distribution, based on an asymptotically exact data augmentation (AXDA). The proposed algorithm is an approximate instance of split Gibbs sampling (SGS) which embeds one Langevin Monte Carlo step. The proposed method is applied to common imaging tasks such as deblurring, inpainting and super-resolution, demonstrating its efficacy through extensive numerical experiments. These contributions advance Bayesian inference in imaging by leveraging datadriven regularization strategies within a probabilistic framework.
Fichier principal
Vignette du fichier
RED_LwSGS_with_supplementary.pdf (3.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04480090 , version 1 (27-02-2024)

Identifiants

Citer

Elhadji C. Faye, Mame Diarra Fall, Nicolas Dobigeon. Regularization by denoising: Bayesian model and Langevin-within-split Gibbs sampling. 2024. ⟨hal-04480090⟩
452 Consultations
63 Téléchargements

Altmetric

Partager

More